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Abstract

In this short introduction the basic principles for the calculation of phonon frequencies
within density-functional perturbation theory (DFPT) are summarized. These notes do
not have the aim to be complete or explain everything. Nevertheless, they could be used

as a guide for the understanding of the theory by reading the given references if necessary.
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1 Introduction

This document will start at the adiabatic approximation and it will one day also contain a
short overview of the basics of the density-functional theory (DFT), even if these topics are
well known. However, in this way also the necessary notation is introduced. The section about
basic functions (here: plane waves) and together with these, the use of pseudopotentials is
skipped at the moment and could be read elsewhere, e.g., in the notes from Pasquale Pavone.

In this document we are mainly talking about solids, but the principles described here are

also valid for surfaces and molecules, which can be calculated using a slab or a large box.

2 Adiabatic approximation
A solid is a many-body problem, which can be described by a Schrodinger equation of the form
H(r,R)¥(r,R) = E(r,R)¥(r, R) (1)

where the Hamilton operator of the system H, the corresponding eigenfunctions ¥, and the self
energies F/ depend on all atomic coordinates R and all electronic coordinates r. The Hamilton

operator has the form
H(r,R) = Ti(R)+T.(t) + Vkx(R) + Vie(r) + Vix (r, R) (2)
with

W) = -3 37 )

being the operator of the kinetic energy of the cores of the atoms with the mass M,
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the operator of the kinetic energy of the electrons with mass m,
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the coulomb repulsion of the cores,

+22|r—r’| (6)

the coulomb repulsion of the electrons, and

eK r, R Z|R-I‘| (7)

the coulomb attraction of cores and electrons.
This many-body problem can not be solved in this form. Within the adiabatic approx-

imation (often called also Born-Oppenheimer approximation[Bor27]) it is assumed, that the
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movement of the electrons does not influence the movement of the atomic cores, whereas the
electrons are adiabatically following the movement of the cores, because of the large difference
in the masses of electrons and cores. This allows us to solve the electronic problem for a fixed
configuration of the cores. Nevertheless, the solution depends on the coordinates of the cores.

With a separation ansatz
\I/(I', R) = \Ile(ra R)\IIK(R) (8)

and the assumption that electron and core motion are not coupled any more, we receive a

Schrodinger equation for the electrons for a fixed configuration of the cores R
He(r, R)W,(r, R) = [T(£) + Vao(r) + Ve (1, R)] W1, R) = Fo(R)T,(r, R) (9)
and a Schrédinger equation for the cores

Hi(R)Ux(R) = [TK(R) + Vi(R) + Ee(R)] Uy (R) = BUk(R) . (10)

3 Density-functional theory (DFT)

The goal is to solve the Schrodinger equation for the electrons (9). The coordinates of the cores
are just parameters, and thus we neglect an explicit notation. The problem is now reduced to
a system of interacting electrons in an external potential, which comes from the atomic cores,
and can be solved within the DFT. The DFT is based on the theorem of Hohenberg and Kohn
(section 3.1). From this, the system could be mapped to a model system which is described
by one-particle equations, the Kohn-Sham equations (section 3.2), which have to be solved. In
these equations everything is well known except the interaction of the electrons (as a function

of the electronic density), and so an additional approximation is necessary (section 3.3).

3.1 Hohenberg-Kohn Theorem

(see notes from Pasquale Pavone and [Hoh64])

3.2 Kohn-Sham equations

(see notes from Pasquale Pavone and [Koh65])

Kohn and Sham derived the following one-particle equations:

<_2h_mv2 + VKs(r)> b(r) = ;(r)
Vis(t) = Vi (r) + Via(r) + Vxe(r) (11)
ne) = S IEP

where N; is the number of all occupied states with self energies ¢;. Here, the effective potential

for the electrons Vkg is named Kohn-Sham potential and

Vielr) = 2 (12)
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is called exchange-correlation potential.

!/
Vi(r) = / |:‘(_r2,| &3 (13)
is the Hartree potential [KKoh85].

The Kohn-Sham equations (11) have to be solved self-consistently, since the Kohn-Sham po-
tential Vxc(r) depends on the electronic density. Because the exchange-correlation interaction
is part of the effective potential, the system of interacting electrons in an external potential Vi
is mapped to a system of non-interacting electrons in an potential 1 Vxc(r) = Vixe + Vi + Ve,
and thus, the solution of the many-body problem is reduced to the solution of single-particle
equations. The idea to see each electron in the field of all others (mean field theory) goes
back to Thomas and Fermi [Tho26, Fer27]. What is missing now is the exchange-correlation

potential, which is the only term which can not be calculated explicitly.

3.3 Exchange-correlation potential

The exchange-correlation energy Fxc[n] is defined as the difference of the exact energy func-
tional E[n] and the sum of all determined terms like the kinetic energy of the non-interacting

electrons Ti[n], the Hartree energy Ey[n|, and the energy of the external potential Eeg[n]:
Exc[n| = E[n| — Ty[n] — Eu[n| — Eext[n] . (14)

This energy will be now approximated.

3.3.1 Local-density approximation (LDA)

(see notes from Pasquale Pavone and [Koh65))

3.3.2 Generalized gradient approximation (GGA)

The GGA is an extension of the LDA (but not necessary for you ...).

4 Basis functions and Pseudopotentials

.. skipped here ...

Main point: frozen core approximation: the core electrons are fixed to the cores. This
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5 Lattice dynamics

Besides the ground-state properties we are interested in the dynamical properties of the solids,
in particular, the lattice vibrations (phonons). Phonons can be calculated within the harmonic
approximation (section 5.1). The calculation of the force constants which yield the phonons, is

summarized in section 5.2.

5.1 Harmonic approximation

The cores are described within the adiabatic approximation by the Schrédinger equation for

the cores, Eq. (10). The cores are moving in an effective core potential
Ver(R) = Vkk(R) + E¢(R) (15)

which inhibits an electronic contribution E(R).

The effective potential depends of the coordinate of the core R. Now we expand the potential
around the equilibrium positions Ry = R(i) = {Ra (i) }, where k is the sublattice index and [
the index of the elementary cell. The expansion is due to the elongation u = {ua (i)} of the

atoms in the direction «, which is a cartesian coordinate, a = x, ¥, z:

Ver(R) = Veg(Ro +u)

0 1 9\’
= V(Ro)+u-—V +—(u-=— ) V + ... (16)
ou |,_, 2! ou ue0
- q)0+q)1+q)2+ y
where we use the definition 3% = (ai , 33 ) Bus ) Since the expansion is around the minimum
z y

of the potential, the linear term vanishes. The quadratic term is

B — 1 o Ly [ I
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Here, ®,. (Ii Z,) is the force-constant matrix. Within the harmonic approximation, all higher-

Ue =0

order (anhamonic) terms are neglected. Therefore, the effective potential can be written as
Vi (R) = VieRo) + =5 S B (1 V() (18)
eff e 0 2’ et e aq K k! [0 K a ! )

which is the potential of an harmonic oscillator. The motion of the core x with mass m, is

described by the classical equation of motion.

My ——tL d2 =) Doy </i f;) Uy <£,> : (19)

I'k'a!



The equations of motion are coupled for all cores and can not be solved in this form. But since
we can assume the solid as infinitely extended, we can apply the Bloch theorem and we can

suppose that the elongation can be superimposed by expressions of the form

e (Z> - wlvT Ua(s, q) e (4RL) (@) (20)

Here, q is a point in the Brillouin zone, w a frequency, and ¢t the time. With this, we go to

the momentum space, in which the system of equations is decoupled. If we put this into the

equation of motion we get

W kq) — )t (T e (R(D)R(Y)

— Z Uo/(’%laq) Daa’( q,)
KR K

Uk’

(21)

D, (Kqﬁ,) is the dynamical matrix and it is the Fourier transform of the matrix of the force
constants. It remains to solve the secularly equation for the frequencies

() o

o =0 (22)

where 13y, is the 3Ny X 3N, dimensional unitary matrix. The dynamic of the cores is now
reduced to 3N independent harmonic oscillators, and the frequencies can be calculated by

diagonalizing the dynamical matrix.

5.2 Calculation of the forces

The calculation of the phonon-frequencies requires the force-constant matrix. This matrix can

be split into an electronic and a core part,

L L o (L
Do </~; /4) = 8K (K Fv,) + ¢, </~; ﬁ,) : (23)

The core part is obtained by the derivation of the Ewald sum, see e.g., [Gia91]. The electronic
part can be calculated with the help of the density-functional perturbation theory. The elec-
tronic part of the force-constant matrix can be written as the second derivative of the electronic
energy E¢(R)

L[l PE(R)
oo’ </€ li’) " OR, (H)oR, (:,) . (24)

This derivative shall be determined now.

5.2.1 Hellman-Feynman theorem
First of all, the first derivative of the energy eigenvalues of a Hamilton operator H,, which
depends on a parameter \, is given by the expectation value of the derivative of the Hamiltonian

o8, _ ., 9t

\ = <¢A|W|%> (25)
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where 1, is a eigenfunction of H, with respect to F.

Within the adiabatic approximation the atomic coordinates are just parameters in the elec-
tronic Hamiltonian, and therefore the electronic part of a force on an atom is given by
8Z?e(]-:{) ‘8He(r R) ‘

FR()))=- = —( Uy(r,R)|—=2|T,(r,R , 26
R =~F0 < T (26)
where H.(R) is the Hamiltonian from Eq. (9). Here, the definition

0 0 0 0
R() (am(@)’afzy(i)’m(,i)) 0
is used.

According to the Hellmann-Feynman theorem [Hel37, Fey39] this force can be written as

FR() = [ n e

with the electronic density of the ground state n(R,r) at an atomic configuration R. The

d*r (28)

electronic part of the force-constant matrix results from a differentiation of the Hellmann-
Feynman force F(R(i))

yam{ E_ﬁHRQ)
ROR() ~  0R() N
_ /8n(Rl,lr) 3VeK(Il{, r)d3r /n(R, 0 32{/:;K(R, Il.,) s (29)
8R (n’) aR (n) aR (n) 8R (n’)

The calculation of ®¢

aa,(l l,) requires besides the ground state electronic density n(R,r) also

K K'
its linear answer to the elongation of the atoms out of their equilibrium positions dn(R,r)/0R
[Cic69, Pic70].

The Hellmann-Feynman theorem shows, that the knowledge of the linear change of the
electronic density is sufficient in order to calculate the variation of the energy up to second

order, after the 2n + 1 theorem [Gon89] also up to third order.

5.2.2 Linear response and density-functional perturbation theory (DFPT)

The calculation of the linear response On(R,r)/0R = n(r) is performed within density-
functional perturbation theory. For this purpose, the external potential of the Kohn-Sham

equations (11) is expanded in a perturbation A,

Veur(r) = V) (1) + AV (r) + O(0?) (30)

ext

which is here the periodic elongation of the cores. Therewith, also all other quantities in the

Kohn-Sham equations are functions of A and they can be expanded in A:

n(r) = n%) +)\n(1)( )+ O(N)
hy(r) = (r) + 20 (x) + O(N?) (31)
Vis(r) = V() +>\VKs( ) +O(N)
€ = —i—)\e +(9()\2)



Now we insert the expansion up to first order into the Kohn-Sham equations (11). A comparison

of the order in A yields the perturbed Kohn-Sham equations

1
—gv”+ngu>—é”]@”u>=—(m@av—é”)@”@>

e = e + [ et 220 .
Nj
nM(r) = o (©) " (r) + 9" (1) 0 (r)
j=1
A multiplication of the first equation by 1/)5-0) (r) leads to the energy e
= [ o vw ) (33)

The equations (32) and (33)have to be solved self-consistently like the Kohn-Sham equations.
The first equation in (32) is the so called Sternheimer equation [Ste54].

Baroni et al. [Bar87, Gia91, Bar01] developed a method in order to solve the perturbed
Kohn-Sham equations for semiconductors. Later on, this procedure was extended to metallic
systems [Gir95]. The PWscf code base on this.

The phonon calculations with ABINIT software package base on the DFPT, too, but the

implementation is slightly different (see references in the attached paper).
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