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1 Introduction

Electronic-structure calculations in solids have considerably evolved from early ap-
proaches (band structure calculations in periodic model potentials, aimed at reproducing
simple crystals) into very sophisticated and powerful techniques. These techniques usu-
ally require no or very little experimental input beyond the basic information on atomic
composition and some structural data. This is the origin of the (perhaps too ambitious)
definitions of ab-initio, or first-principles, or (perhaps more appropriately) parameter-
free, which usually label these techniques. In conjunction with the enormous increase in
computer power (and the decrease in computer prices), ab-initio methods now allow us
to accurately reproduce and even to predict electronic and structural properties of real
materials, and not just the simplest ones. This predictive power makes a strong case
in favour of ab-initio methods, whenever they are applicable, with respect to empirical
or semiempirical methods. These are far less computationally demanding but also less
reliable.

This paper will introduce ab-initio techniques based on Density Functional Theory,
in particular those using plane waves and pseudopotentials. Such an approach has
proven to be surprising successful and specially well suited to the study of weakly
correlated, s-p bonded materials, like for example semiconductors. Relevant aspects for
computer implementation will be examined in some detail. In particular, I will examine
problems that arise when dealing with complicated systems, that is those described by
unit cells containing many atoms. With present algorithms, both computer time and
memory requirements scale unfavourably with the size of the unit cell. As a consequence
the study of many interesting physical systems such as alloys, disordered or amorphous
materials, defects, surfaces and interfaces, is still difficult or impossible. Possible ways
to improve the situation will be pointed out.



2 Theoretical Approach

Solving the many-body Schrodinger equation for electrons in a real material is by
no means a trivial task even in the presence of simplifying assumptions (such as perfect
periodicity for crystals). For completeness, I list here the main possibilities:

i) ‘Exact’ solutions: Quantum Monte Carlo calculations, Fermionic simulations with
Hubbard-Stratonovich transformations. These very recent developments can yield ex-
tremely accurate results, but they are also extremely time-consuming so that only very
simple problems can be treated.

ii) ‘Green’s Function approach’. This is based on a perturbative expansion of the
self-energy. The most often used approach is the so-called ‘GW approximation’. This
method is also very accurate (although not undisputed), but it is also computationally
cumbersome and it is still limited to simple crystals.

iii) Hartree-Fock-based methods. Hartree-Fock alone is known not to be very accu-
rate, so that some form of correction (Configuration Interaction or perturbative) has
to be added to the Hartree-Fock results in order to get better accuracy. This set of
techniques, generally used in Quantum Chemistry, has traditionally been applied to
molecules rather than to extended system.

iv) Density Functional Theory (DFT), mainly in the Local Density Approximation
(LDA). In contrast to the previous approaches, DFT is a ground-state theory in which
the emphasis is on the charge density as the relevant physical quantity. DFT in the LDA
has proved to be highly successful in describing structural and electronic properties
in a vast class of materials. Furthermore LDA is computationally very simple. For
these reasons LDA has become a common tool in first-principles calculations aimed at
describing — or even predicting — properties of complex condensed matter systems.

Many good books and papers have been written on DFT and LDA[1], so that I will
recall here only the basic facts. DFT looks deceivingly simple, but it hides a number
of subtle points. The interested reader should consult the more specialized literature.

We can start from the obvious statement that an external potential V(r) acting on
a system of N interacting electrons will determine the charge density n(r) of the ground
state. The opposite statement is far less obvious. However this is exactly what has been
demonstrated by Hohenberg and Kohn in 1964[2]: there is only one external potential
V(r) which yields a given ground-state charge density n(r). The demonstration is
elementary and uses a reductio ad absurdum argument.

DFT arises from the Hohenberg and Kohn theorem: the ground state energy E is
also uniquely determined by the ground-state charge density. In mathematical terms
E is a functional * E[n(r)] of n(r). We can write

Eln(r)] = Fln(r)] +/n(r)V(r)dr (1)

where F'[n(r)] is a universal functional of the charge density n(r) (and not of V'). The
variational principle implies that the ground-state energy is minimised by the ground-
state charge density. In this way, DFT reduces the N-body problem exactly to the
determination of a 3-dimensional function n(r) which minimises a functional E[n(r)].
Unfortunately this is of little utility as F'[n(r)] is not known.

One year later, Kohn and Sham (KS) reformulated the problem[3] and opened
the way to practical applications of DFT. First, the system of interacting electrons
is mapped on to a fictitious system of non-interacting electrons having the same ground

LA functional is a generalisation of the concept of a function: a function associates a value with
another value while a functional associates a value with a given function.



state charge density n(r). This is performed by introducing KS orbitals ;(r) for N

electrons, such that
N/2

) =23 fur) e

assuming double occupancy of all states. Charge conservation requires that the KS
orbitals obey orthonormality constraints:

[ i@,y = 5 (3)

The energy functional is rewritten:

E = Toln(x)] + 5 /|r_|)d dr' + Ey.n +/ (4)

The first term is the kinetic energy of non-interacting electrons:
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where m is the electron mass. The second term (called the Hartree energy) has the
electrostatic interactions between clouds of charge. The third term, called the exchange-
correlation energy, contains everything also and all our ignorance of the density func-
tional.

Minimization of Eq. (4) under the constraints [ n(r)dr = N yields the KS equations:

(H =€) i(r) =0 (6)

where

H - ——v2+ / V() (7)
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is the so-called KS Hamiltonian. ? In this way the N-electron problem is remapped on
to a l-electron problem with a self-consistent potential V,.; which is given by the sum
of the external (ionic) potential and a screening potential:

5Ezc
Vaer (1) per [0 = e ®)

One still needs a reasonable estimate for the exchange-correlation energy E,.[n(r)].
Kohn and Sham|[3] introduced the Local Density Approximation, or LDA: they approx-
imated the functional with a function of the local density n(r) :

Epln(x)] = [ e(n(x))n(r)dr, (ff(r) = fae(n(r)) = <e(n) —nd;(:)> » (9)

and for e(n(r)) used the same dependence on the density as for the homogeneous electron
gas (or ‘jellium’) for which the n(r) is constant.

?Functional derivatives §F'/dn(r) are defined implicitly through §F = [(6F/én(r))dn(r)dr.



Even in such simple case the exact form of ¢(n) is unknown. However, approximate
forms have been known for a long time, going back to Wigner[4]. Numerical results
from exact Monte-Carlo calculations in jellium by Ceperley and Alder[5] have been
parameterized by Perdew and Zunger[6] with a simple analytical form:

€zc(n) = —0.4582/r; — 0.1423/(1 + 1.0529+/r, + 0.3334r;) ,re > 1
= —0.4582/ry — 0.0480 + 0.0311Inr, — 0.011675 4+ 0.0020rsInr, ,ry <1
(10)

where 7, is the usual parameter in the theory of metals: r, = (3/47n)Y/3, and the
energy is expressed in Hartree. This form — the ‘real’ LDA — is often used. More
accurate approximations have been recently proposed in Ref.[7]. Usually all forms
yield very similar results in condensed-matter calculations (which is not surprising as
all the parameterizations are very similar in the range of r, applicable for solid-state
phenomena).

LDA has turned out to be much more successful than expected[8]. Although it is
very simple it yields a description of the chemical bond that is superior to that obtained
by Hartree-Fock, and it compares well to much weightier Quantum Chemistry meth-
ods. For weakly correlated materials such as semiconductors structural and vibrational
properties are accurately described: the correct structure is usually found to have the
lowest energy, bond lengths, bulk moduli and phonon frequencies are accurate within
a few percent or so on[8, 9, 10]. LDA also has some well-known drawbacks. In finite
systems the incorrect cancellation of the self-interaction is reflected in an incorrect long-
range behaviour[6]. LDA tends to badly overestimate (~ 20%) cohesive energies and
to underestimate to an even worse degree (~ 50%) the band gaps in insulators. More
generally DF'T is a ground state theory and KS eigenvalues and eigenvector do not have
a clear physical meaning. Moreover LDA is an uncontrolled approximation: it is not
clear at all what to do in order to go beyond LDA. There have been several attempts
in this direction: recently the gradient correction[11] has attracted a lot of interest, but
the effectiveness of such approaches is still a controversial issue. Nevertheless LDA is a
valuable tool in investigation of material properties.

2.1 Forces in DFT

An important consequence of the variational character of DFT is the possibility of
calculating Hellmann-Feynman forces acting on atoms[12]. Forces are the derivative of
the total energy with respect to atomic positions R;:

Fi = —VR = —/ VR V dI‘ — vRiEII(R) (11)

_/Lmr -

where Ej; is the ion-ion (classical) interaction energy. The electronic part contains an
explicit dependence on atomic positions through the potential V(r) = Viry(r), and an
implicit dependence through the ground-state charge density n(r). The explicit deriva-
tive and the ion-ion term are easy to calculate. The implicit derivative is not. In fact
we have to know how the charge density changes when we move the atoms. Fortunately,
the variational character of DFT helps us. In fact the last term in Eq. (11) contains
the first-order variation of the energy functional around the ground-state energy, which
vanishes if the ground state is a minimum. In more mathematical terms, the mini-
mization of the energy under the constraint of constant total charge implies that the

v<r)1 Vi, n(r)dr,



variation of the following function:

min {F[n(r)] + [ n()V(x)dr - A (/ n(r)dr — N)} , (12)

with respect to an arbitrary variation on(r), must vanish. \ is a Lagrange multiplier
and N the total number of electrons. Using elementary variation calculus, this yields

/ l% +V(r) — )\] on(r)dr =0, (13)
that is,
[62?1) + V(r)] =\ (14)

As a consequence, forces are simply the matrix element of the ground state of the
gradient of the external potential plus an ion-ion term:

F, = — / n(r)Ve,V(r)dr — Vg, Epr(R). (15)

3 Routes to the ground-state

A major goal of electronic structure calculations is to find ground-state ionic posi-
tions {R} and the corresponding ground-state electronic states {1y, } by minimising the
total energy F(R,v) = Eppr(R,¥)+E;;(R), where the second term is the ion-ion clas-
sical Coulomb interaction. We assume the validity of the adiabatic (Born-Oppenheimer)
approximation. This goal can be achieved through different strategies.

The most straightforward — and historically the first — approach is to do things one
at the time using nested iterations. An outer iteration on atomic positions minimises
f(R) = E(R,9y(R)) where the ¢,5(R) are the electronic ground-state KS orbitals
for a given atomic configuration {R} (in more formal terms: the 1,,(R) are ‘on the
Born-Oppenheimer surface’). The task is much easier if the forces F; = —Vg, f(R) can
be calculated.

An inner iteration on the potential (or equivalently on the charge density) allows us
to find ¢5(R) and E(R, 945(R)). Starting from some initial guess for the self-consistent
potential (for instance, the bare ionic potential) the KS Hamiltonian is diagonalised and
solved:

h2
With the resulting charge density:
N/2

nout<r) =2 ; |¢z(r)|2 (17)

a new LDA potential is obtained:

Nout (T
Voulr) = V() +¢* [ 10 i(r,f '+ f1ze(out(r)). (18)
This will be equal to the input potential only when self-consistency is attained. The
output potential cannot be simply reinserted in the cycle: this will not in general bring
convergence. Instead a new Vj, is generated by some suitable algorithm which takes



into account the V},’s and V,,;’s of preceding interactions. When self-consistency is
achieved one can calculate the total energy F' = E(R) as the sum of the electronic and
ionic terms. 3 We denote this type of iteration of the potential as ‘SCF’ (‘self-consistent
field’).

This kind of approach, often referred to as the wheel in the wheel algorithm, * has
been widely and successfully used in a variety of solid-state systems[10]. However this
is not the only way to achieve our goal, nor necessarily the best. In particular the
relaxation of atoms to their equilibrium positions requires an accurate calculation of
forces. It may happen that the relaxation brings into a local minimum and never
achieves the minimum-energy structure. The SCF iterations of the potential can be
quite slow in some cases (e.g. elongated unit cells, low or no symmetry).

An alternative way to find the electronic ground state for fixed ions consists in min-
imizing directly the density functional, without solving explicitly the KS equations[13].
In practical calculations the density functional, Eq. (4), is a function of the coefficients
of the KS orbitals v; in some basis set. Minimization of such a function under the
orthonormality constraints of Eq. (3) can be achieved through the use of well-known
conjugate-gradient[14] or similar algorithms. This kind of approach — which we will re-
fer to as ‘Direct Minimization’ — is becoming increasingly common|[15]. Along the same
line of thought one can minimize directly the density functional very efficiently using
the Direct Inversion in Iterative Subspace (DIIS) method[16] borrowed from Quantum
Chemistry.

A more radical point of view has been proposed by Car and Parrinello in 1985[17]:
do everything at the same time and on the same footing. This is achieved by merging
DFT with classical Molecular Dynamics methods into a new and powerful tool — a
Quantum Molecular Dynamics — for the study of real materials. Car and Parrinello
introduced a fictitious Lagrangian

. 9 1 .
£=53 [drfe) + 530 MRS - B(R,v) (19)
i T
which generates the following set of equations of motion:

2
pa; = <—h—v2 + ‘/scf(w)> Ui — Nijty;,  MiR; = —Vg,E. (20)

2m

The ‘masses’ i associated to the v;’s are fictitious: they are used only to generate the
dynamics. The A;; enforce the orthonormality constraints. The resulting equations
of motion can be treated with classical Molecular Dynamics technology. In this way
one can simultaneously achieve electronic and ionic relaxation, and even more: one
can obtain information on the dynamical behaviour. A good introduction to the Car-
Parrinello method and its successes is given in Ref.[18].

The following sections give an overview of technical aspects and of the practical
implementation of the SCF approach using plane waves basis sets and pseudopotentials
to reproduce the electron-ion interactions. Most of the technical points are relevant for
the Car-Parrinello and Direct Minimization approaches as well.

3The general properties of the density functional ensure that for fized ions there is only one mini-
mum, corresponding to the ground state.
4Another ‘wheel’ is generally present in the solution of the KS Hamiltonian, see Sec.5.2.



4 Tools

4.1 Supercells

In perfect crystals the natural framework to solve the KS equations takes advantage
of periodicity: the crystal is described by a periodically repeated unit cell containing
one or more atoms (the basis), by a crystal lattice and a reciprocal lattice. Using Bloch’s
theorem, states are classified by a wavevector k in the Brillouin Zone (BZ) and form
energy bands. In some cases, unit cells can be quite large and contain many atoms.
This is the case for example with superlattices, artificial layered materials in which the
periodicity of the original lattice — the one of the component materials — is replaced by
a ‘superperiodicity’, with a supercell which is larger than the original cell.> Another
example is given by solid Cg, both pure and doped with alkali atoms (such as the
superconductor K3Cg).

Many interesting physical systems do not exhibit perfect periodicity. Good examples
are disordered superlattices (superlattices with intermixing at the interfaces), quantum
wells, substitutional alloys, point defects, and surfaces. In all such cases it is convenient
to simulate an aperiodic (or ‘almost-periodic’) system with a periodically repeated
fictitious supercell. The form and the size of the supercell depend on the physical
system being examinated. For example, the study of point defects requires a defect
‘not to see’ its periodic replica in order to accurately simulate a truly isolated defect.
This approach is actually used also for the extreme case of molecules and clusters. The
use of supercells for such demonstrably nonperiodic objects may seem odd but there
are important computational advantages in such an approach. °

The size of the unit cell — the number of atoms and the volume — is very important.
Together with the type of atoms it determines the difficulty of the calculation: large
unit cells mean large calculations. Unfortunately many interesting physical systems are
described — exactly or approximately — by large unit cells.

4.2 Plane Waves

KS wavefunctions must be expanded in some suitable basis set. For periodic sys-
tems, the basis set is formed by Bloch states of wavevector k. A large number of
different basis sets have been proposed and used. Most fall into the ‘localised basis set’
category. Some of the most frequently used are Bloch sums of Linear Combinations
of Atomic Orbitals (LCAO), Gaussian-type Orbitals (GTO) and Linearised Muffin-Tin
Orbitals (LMTO)[9]. These atomic-like functions are tailored for fast convergence, so
that only a few (some tens at most) functions per atom are needed. However they are
quite delicate to use. In particular it is difficult to check systematically for convergence
(a well-known problem of Quantum Chemistry). Another serious drawback is the diffi-
culty of calculating derivatives of the energy (e.g. forces on atoms)[19]. Forces are very
important in determining the structure of a complex system. They are crucial quan-
tities in Car-Parrinello and other Quantum Molecular Dynamics applications. Only
recently have important advances been made in this field[20].

An opposite approach is to choose completeley extended, atomic-independent Plane
Waves (PW) as basis set. For a given reciprocal lattice {G} and for a given vector k

5Strictly speaking, there is nothing ‘super’ in both the cell and the lattice of a perfect superlattice.
One just wants to stress that the unit cell includes several unit cells of the component materials.

6The opposite point of view, that is, simulating extended systems with larger and larger clusters,
has been traditionally used in Quantum Chemistry. However, it turns out that clusters converge only
very slowly in solid state behaviour.



in the BZ, a PW basis set is defined as

2
k+G) = %e’(k“})'r, §—m|k + G|* < Eewt, (21)
where V' is the crystal volume, and FE.,; is called the ‘kinetic energy cutoff’, or simply
the cutoff. PW’s have many attractive features: they are simple, orthonormal by
construction, unbiased and it is very simple to check for convergence (by increasing the
cutoff).

A distinct computational advantage of PW’s is the existence of very fast algorithms
(known as the Fast Fourier-Transform, FFT) to perform the discrete Fourier transforms.
This allows simple and fast transformation from reciprocal to real space and vice versa.
The basic one-dimensional FFT executes the following transformation:

N-1
fi=>" g™ N i=0,..,N-1, (22)
=0
and its inverse
1= —2mij /N
j=0

The tranformation is usually performed ‘in place’, that is the result is overwritten on
the input vector. This takes O(NNlog N) operations. In three dimensions the discrete
Fourier transform maps a function f(g;) in reciprocal space into a function f(r;) in the
unit cell (and vice versa):

g = ilGl + ing + igGg, r, = ]‘7\[11R1 + ]{ZRQ + jj\;;RS (24)
where Rj, Ro, R (G1, Go, G3) are the three fundamental translations that generate
the real-space (reciprocal) lattice, iy = —N;/2,...,N1/2, and so on. Ny, Na, N3 must
be sufficiently large to include all available Fourier components; the more Fourier com-
ponents, the larger the grid in G-space and the finer the grid in R-space. It is easily
verified that this 3-d F'T can be done in a very fast way by performing 3 inter-nested
1-d FFT. Computers usually have some highly optimised library routines performing
FFT."

PW’s look like the ideal basis set for solids. Unfortunately their extended character
makes it very difficult to accurately reproduce localized functions such as the charge
density around a nucleus or even worse, the orthogonalization wiggles of inner (‘core’)
states. In order to describe features which vary on a lengthscale §, one needs PW’s
with a cutoff as high as ~ (27/4)?, that is one needs ~ 47 (27/§)3/3Q2 PW’s (where
(2 is the dimension of the BZ). A simple estimate for diamond is instructive. The 1s
wavefunction of the carbon atom has its maximum around 0.3 a.u., so § ~ 0.1 a.u. is a
reasonable value. Diamond has an fcc lattice (2 = (27)3 /(a3 /4)) with lattice parameter
ap = 6.74 a.u., thus yielding ~ 250,000 PW’s. This is clearly too much for practical
use.

"The ‘true’ original FFT works only when Ni, No, N3 are powers of 2, but algorithms for more
general values do exist. While it is a good practise to keep factors in N as small as possible, it is
not always true that powers of 2 are the best choice: it depends on the algorithms used and on the
computer architecture.



4.3 Pseudopotentials

Core states prevent the use of PW’s. However they do not contribute in a signif-
icant manner to chemical bonding and to solid-state properties, only outer (‘valence’)
electrons do®. Core states remain there ‘frozen’ in their atomic configuration making
calculations more difficult. The idea of replacing the full atom with a much simpler
‘pseudoatom’ with valence electrons only arises naturally (apparently for the first time,
in a 1934 paper by Fermi[21]). ‘Pseudopotentials’ (PP’s) have been widely used in solid
state physics starting from the 1960’s. In earlier approaches PP’s were devised to re-
produce some known experimental solid-state or atomic properties such as energy gaps
or ionization potentials. Already in this ‘empirical’ phase they proved to be a valuable
tool[22].

A major breakthrough occurred in 1979 with the introduction of Norm-Conserving
PP’s by Hamann, Schliiter, and Chiang[23]. These are atomic potentials which must
obey the following conditions. Given a reference atomic configuration
1) all-electron and pseudo-wavefunctions must have the same energy, and
2) they must be the same beyond a given ‘core radius’ r., which is usually located
around the outermost maximum of the atomic wavefunction;

3) the pseudo-charge and the true charge contained in the region r < r. must be the
same. ?

The above conditions ensure transferability, the ability to yield correct results for
configurations different from the reference one, or in different environments (such as in
molecules or in condensed matter). In fact Norm-Conserving PP’s are able to accurately
mimic core scattering properties in an energy region which is not too far from the
energy of the reference state. Norm-Conserving PP do not have singularities. They
are relatively smooth functions, whose long-range tail goes like —Z,e?/r where Z, is
the number of valence electrons. They are nonlocal because it is usually impossible to
mimic the effect of orthogonalization to core states on different angular momenta [ with
a single function. There is a PP for every I:

VP = Vie(r) + > Vi(r) By (25)

where Vipe(r) ~ —Z,e2/r for large r and P, = |1)(I| is the projection operator on states
of angular momentum [. We can recast such a potential in the form

VP = Vi (r) + lz Yim (£)Vi(r) 3 (r — 1) Yy (1), (26)

for which the nonlocal character is more evident. Although nonlocality is a drawback,
because it makes calculations more difficult, it is not a big one !° in practical applica-
tions.

Tables of PP’s for all elements have been published by Bachelet, Hamann, and
Schliiter in a a much-quoted 1982 paper[24]. Experience has shown that PP’s are prac-
tically equivalent to the frozen core approximation[25]: PP and all-electron calculations
on the same systems yield almost indistinguishable results (except for those cases in
which core states are not sufficiently ‘frozen’).

8The border between core and valence electron is often evident on physical grounds but sometimes
it is not. For instance, in Cs the 5s and 5p states can sometimes be considered safely as core states
but more often they cannot.

9This last condition explains the name ‘Norm-Conserving’. There is an historical reason: some
older pseudopotentials had an ‘orthogonalization hole’ problem which caused violation of condition 3

0However, strictly speaking, DFT is valid only for local external potentials!



4.4 Brillouin-Zone Sampling

In a periodic system, or in a system described by a suitable supercell, the states
are classified by a wavevector k in the BZ and by a band index. For a given k, the KS
orbitals are expanded into PW’s of appropriate periodicity

i) =Y Wik + G)k+ G) (27)
G

up to a given energy cutoff F.,. In order to calculate the charge density n(r) in a
periodic system one has to sum over an infinite number of k-points:

n(e) = £ 3 (o) (28)

In fact, assuming periodic (Born-Von Karman) boundary conditions
Y(r+ LiRy) = ¥(r + LoRy) = o(r + L3R3) = ¥(r), (29)

a crystal has Ly Ly L3 allowed k-points. In the limit of an infinite crystal, Ly LoLs — 00
and the discrete sum becomes an integral over the BZ. It is not obvious at all that
this integral can be approximated by a discrete sum over an affordable number of k-
points. However experience shows that this is actually possible, at least in crystals with
completely filled or completely empty bands.

Symmetry — when present — can be used to reduce the number of calculations to be
performed. Only one k-point is left to represent each ‘star’ — the set of k-points that
are equivalent by symmetry — with a ‘weight’ w; which is proportional to the number
of k-points in the star. The infinite sum over the BZ is replaced by a discrete sum over
a set of points {k;} and ‘weights’ w;:

1 Q
V zk: fk(r) E— (271')3 ZL: wifkl. (I‘) (30)

The resulting sum is then symmetrized to get the charge density. Other quantities (such
as the total energy) which contain sums over the BZ can be dealt with in a similar way.

Suitable sets for BZ sampling in insulators and semiconductors are called ‘spe-
cial points’[26, 27]. Let us consider the case of an fcc crystal having cubic symme-
try. The smallest special point grid is formed by the ‘mean-value’ or Baldereschi
point[26]: k = (0.6225,0.2953,0.0) (in units of 27 /ag). Better accuracy is obtained
with the much-used ‘two Chadi-Cohen points’[27]: k; = (1/4,1/4,1/4),w; = 1 and
ko = (1/4,1/4,3/4),wy = 3. Then there are 6-, 10-point grids and so on, yielding
increasing accuracy. !

In metals things are more difficult because one needs an accurate sampling of the
Fermi surface. The ‘Gaussian broadening’ and the ‘tetrahedron’ techniques, or varia-
tions of the above[28], are generally used.

When the unit cell gets larger, the BZ become smaller and the need for accurate
sampling becomes less stringent. For very large supercells, the sampling obtained with
only the I" point (k = 0) is usually good enough. Of course when supercells are used
to simulate aperiodic systems such as clusters and molecules the I' point is the good
choice. There is no point in trying to reproduce the effect of a fictitious periodicity.

11 Actually the name ‘special points’ is somewhat misleading in this case. In fact those sets just form
uniform grids in the BZ.
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5 Algorithmic aspects

5.1 Potential mixing

The calculation of the self-consistent potential requires a way to mix the input
and output potentials to yield a new input potential. The simplest approach (‘simple
mixing’) is the following:

Vit = av 4 (1 - )V, (31)
where the superscripts indicate the iteration number and the value of @ must be chosen
empirically in order to get fast convergence. As a rule relatively big values (v = 0.3—0.5)
can be chosen for small cells while smaller values are needed for bigger or elongated
cells (like for a superlattice). Simple mixing is not very effective especially for big
cells, or even worse for surface calculations. Better results are obtained with more
sophisticated algorithms, like for example the family of Anderson algorithms[29] and
modified Broyden algorithms[30]. The latter seems to be quite effective in situations of
difficult convergence.

Eventually, as the size of the cell increases convergence becomes slower and slower.
This adverse behaviour can be traced back to charge oscillations (‘charge sloshing’) that
take place in large cells. Preconditioned Conjugate Gradient algorithms are claimed to
be less sensitive to this problem[15]. The phenomenon of convergence-slowing-down is
well-known in many different fields of computational physics. The ultimate solution
could come from application of multigrid concepts[31]. Work along such lines is in
progress|32].

5.2 Diagonalization of the Hamiltonian

By far the most time-consuming step in an SCF calculation is the solution of the
KS equations, Eq. (7). When the eigenfunctions are expanded on a finite basis set the
solution takes the form of a secular equation:

Y H(k+ G, k+ G )iy (G) = exithii(G), (32)

Gl

where the matrix elements of the Hamiltonian have the form

2

h
Hk+Gk+G) = 5 (k+ G)%*bc.ar + Viee(G — G') + Vyr(k + G,k + G').  (33)

m
The local contribution Vj,. includes both the local term in the PP’s and the screening
potential. The nonlocal contribution Vy; comes from the PP’s. The problem is re-
duced in this way to the well-known problem of finding the lowest M eigenvalues and
eigenvectors (only the valence states for insulators, a few more for metals) of an N x N
Hermitian matrix (or a real symmetric matrix when inversion symmetry is present).
This task can be performed with well-known bisection-tridiagonalization algorithms,
for which very good public-domain computer packages (EISPACK or the more recent
LAPACK)[33] are available. Unfortunately this straightforward procedure has serious
limitations. In fact:

— the computer time required to diagonalise a N x N matrix grows as N3

— the matrix must be stored in memory, requiring O(N?) memory.

As a consequence a calculation requiring more than a few hundred PW’s becomes
exceedingly time- and memory-consuming. As the number of PW’s increases linearly
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with the size of the unit cell it is very hard to study systems containing more than a
few (say 5-10) atoms.

Both limitations have been overcome with the introduction of iterative techniques[34].
These techniques can be used whenever

i) the number of states to calculate M is much smaller than the dimension of the
basis set N, and

ii) a reasonable and economical estimate of the inverse operator H~! is available.

Both conditions are satisfied in an SCF calculation in a PW basis set. In fact
M < N is always true, and the Hamiltonian matrix is dominated by the kinetic energy
at large G (that is, the Hamiltonian is diagonally dominant).

Iterative methods are based on a repeated refinement of a trial solution, which
is stopped when satisfactory convergence is achieved. The number of iterative steps
cannot be predicted in advance. It depends heavily on the structure of the matrix, on
the type of refinement used, and on the starting point. A well-known and widely used
algorithm is due to Davidson[34]. In this method, a set of correction vectors |d¢;) to
the M trial eigenvectors |¢;) are generated as follows:

1

0i) = D —¢

(H — e)u) (34)

where the €; = (¢;|H|1¢;) are the trial eigenvalues. The |d1);)’s are orthogonalised and
the Hamiltonian is diagonalised (with conventional techniques) in the subspace spanned
by the trial and correction vectors. A new set of trial eigenvectors is obtained and the
procedure is iterated until convergence is achieved. A good set of starting trial vectors
is supplied by the eigenvectors at the preceding iteration of the potential.

An important point is the following. The Hamiltonian matrix is never explicitly
required excepted for its diagonal part. Only H1; products are required, which can
be calculated in a very convenient way by applying the dual-space technique[35]. In
fact the kinetic term appearing in Eq. (33) is diagonal in G-space, whereas the local
potential term is diagonal in real space. Using FF'T’s one can go quickly back and forth
from real to reciprocal space and perform the products where it is more convenient.
There is still a nonlocal term which appears to require the storage of the matrix. The
trick is to write Vi, in a ‘separable’ form:

Nagt n
Var(k+ G k+G)=> > fi(k+ G)gi(k+G), (35)

p=1j=1

where n is a small number and N, is the number of atoms in the unit cell. This allows
us to perform the products by storing only the f and g vectors. The reduction to
separable form is exact and straightforward when the Kleinman-Bylander projection
(see Appendix) is used. It is more involved but still possible when conventional PP’s
are used. The trick can also be used with Vi in real space thus taking advantage of
the short-range nature of Vi, [36].

5.3 Computational workload

When iterative techniques are used to diagonalize the Hamiltonian the time-con-
suming step is the calculation of the products H followed by orthogonalization. For a
system of N, atoms in the unit cell having M occupied states expanded into N PW’s,
the calculation of the products H1 for all occupied states require:

~ O(MN?) operations if the Hamiltonian is stored as a matrix;
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~ O(MNlog N) + O(N,MN) operations if the dual-space technique is used;

—~ O(MN log N)+ O(Ny M) operations if the dual-space technique is used with Vi,
in real space.

Orthogonalization of each trial eigenfunction to all others requires O(M?N) op-
erations. Similar considerations apply to the Car-Parrinello and Direct Minimization
approaches.

Let us consider how the computational workload scales with the number of atoms
in the unit cell. 2 The number of states M is proportional to N,. The number
of PW’s is proportional to the volume of the unit cell. For this reason N o N, as
well. In summary the Hv products can be performed in O(N?) operations in the best
case. Orthogonalization requires O(N32,) operations. For very big cells this will be the
dominant part whatever we do to speed up the calculation of the H1 products.

This unfavourable scaling with the size of the cell has a simple physical root. The
Hamiltonian eigenstates of an extended system are usually extended. As a first con-
sequence the computational workload needed to calculate them scales at least as the
number of orbitals times their size (the dimension of the basis set), i.e. as N%. As a
second consequence orbital orthogonalization requires additional work proportional to
the square of the number of orbitals times their size, i.e. N3,.

6 Linear-scaling algorithms

General physical considerations indicate that the energy and related properties of
a system of non-interacting electrons (such as the one appearing in the Kohn-Sham
formulation of DFT) should be calculable with a workload proportional to the size of
the system. In fact the local nature of the Schrodinger equation and the condition
of local charge neutrality imply that the local density of states at a given point — in
contrast with the individual eigenfunctions — does not depend on the details of the
system far from that point[37].

The search for better-scaling algorithms has become a very active research field in
the last few years and many different proposals have appeared in the literature[38, 39,
40, 41, 42].

One possibility is in some way to force the eigenfunctions to be localized in space
and to express the electron density in terms of the latter. This idea is being explored
following different methods by several authors. In Yang’s approach[38] the system is
divided into small independent subsystems within which the numbers of electrons are
determined by a common chemical potential. The electron density is then determined
by conventional diagonalization techniques within each subsystem. Another way to
achieve the same goal is to use ‘confining potentials’. This idea is currently under
active development in a Car-Parrinello framework and looks quite promising[39].

Other authors have focussed on the direct solution of the density matriz[40] suitably
truncated in real space. Another idea is to use a statistical approach, based on the
mazximum entropy principle[41], to extract the relevant information on the density of
states.

In the following, I will briefly describe a different approach[42] in which the use
of KS orbitals is completely avoided. The charge and energy densities are obtained
directly from the one-electron Green’s function without going through any Schrodinger-

12\We do not address here the problem of convergence slowing-down with increased size of the cell.
We only consider the time needed to execute a basic steps, not how many basic steps are needed in a
complete calculation.
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like equations. This method is in principle exact,'® it displays the right linear scaling

with size, and it is still rather simple to implement. The approach is based on a finite-
difference real-space discretization of the Hamiltonian and on the Recursion Method[43]
to calculate the electron and energy densities from selected elements of the one-electron
Green’s function.

The starting point is a well-known identity relating the density matrix of a system
to its one-electron Green’s function,

1
N=2-—1¢ G(r,1r';2)d 36
plex) =25 - f Glr.x'sz)dz, (36)

27

where CF is a contour in the complex energy plane enclosing just the occupied-state
eigenvalues. The factor 2 accounts for spin degeneracy and the Green’s function
G(r,r’; 2) is the real-space representation of the resolvent of the Hamiltonian,

1
e—H

According to Eq. (36), the electron density, n(r) = p(r,r), can easily be calculated
from knowledge of the diagonal elements of the Green’s function. The number of points
necessary to numerically evaluate the integral (36) to a given accuracy depends on
the valence band width and on the minimum distance of the contour from the energy
eigenvalues. Both these properties do not depend on the size of the system, at least
for insulators. Therefore if the work needed to calculate Eq. (36) is independent of the
size, then the work necessary to obtain the full charge density will scale linearly.

We next discretize the problem by using finite differences on a uniform grid {r;}.
The finite-difference representation of the Hamiltonian is sparse. If second-order dis-
cretization on a cubic uniform grid is used for the Laplacian the only non vanishing
matrix elements H;; = (r;|H|r;) are on the diagonal and between neighbouring points,

G(r,r';e) = (r|G(e)lr') = (r] ). (37)

1 e
g Vete) =
0 otherwise,

where h is the spacing between the grid points and a local potential is assumed.'4

Calculating Eq. (38) by standard factorization techniques would again result in a
workload proportional to N3,. Tterative algorithms to solve elliptic partial differential
equations could in principle be used to calculate the inverse of (¢ — H) with a cost
proportional to N2. Of course this price is optimal for the calculation of the full
inverse matrix. It is too high if only the diagonal of the inverse is required.

A convenient way to compute a single diagonal element of the Green’s function is
provided by the Recursion Method of Haydock, Heine, and Kelly[43]. In the Recursion
Method, diagonal elements of the Green’s function <¢0]@]¢0> are expressed in terms
of a continuous fraction whose coefficients are calculated from a chain of orthonormal
states recursively generated from |¢y),

bilgr) = Hlgo) — aolpo)
balda) = Hl¢1) — ai|d1) — bi|do)
bn|¢n> - H|¢n—l> - an—1|¢n—1> - bn—l|¢n—2>)

13Tt is also possible to get rid of the KS orbitals by using Thomas-Fermi like approximations for the
density functional. Such approximations are unfortunately quite inaccurate.
4Nonlocal PP can also be used exploiting the short-range nature of the nonlocal terms.
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where
an = (| H|n), b = (Pn|H|Pn1)- (40)

The relevant diagonal element of the Green’s function is then given by the continuous-
fraction expansion,

<¢0|G(€)‘¢0> = (41)

bi

€—ag —
b2
2

€E—ag — ————
E_a2_..-

The part of the continuous fraction which is not calculated when truncating the
chain after n steps (indicated in Eq. (41) by dots ‘---" in the case n = 2) is called
the terminator, t,(¢). The terminator describes the influence on (¢o|G(€)|¢o) of that
portion of the system which is not spanned by the finite chain. In actual calculations, the
continuous fraction (41) is either truncated after a finite number n of steps (t,(¢) = 0),
or is closed by an approximate terminator. In this case the initial state is localized,
|po) = |ri), as are the subsequent terms of the chain by virtue of the sparseness of
the Hamiltonian (38). Therefore the evaluation of each given step of the chain (39)
requires a workload independent of the size of the system. At each step the newly
generated state in the chain of states explores further points. The continued fraction
can be truncated when the relevant region around a point — the local environment
which mostly determines the charge density at that point — is explored. This happens
after a number of steps which is independent of the size[37], at least for sufficiently
large systems. We conclude that the application of Recursion Method ideas allows us
to calculate the electron density — and hence to implement DFT — with a workload
which scales linearly with N,;. Moreover the procedure is highly suitable for parallel
computing as the charge density can be calculated independently at each point of the
grid.

The off-diagonal elements of the density matrix necessary to calculate the kinetic
energy could be computed along similar lines. The kinetic energy, however, is more
conveniently calculated from the relation,

Erin =2 Z € — /n(r)Vscf(r)dr. (42)

The sum over occupied-state eigenvalues can again be expressed in terms of diagonal
elements of the Green’s function:
1

ZQ = Z%F 2G(rj,r;; 2)dz. (43)

271

A first test of this approach has been done in Ref.[42]. It was shown that the number
of steps necessary to obtain a satisfactory accuracy was rather large if the chain was
simply truncated. This is a consequence of the well-known difficulty of reproducing the
properties of an extended system by truncating it to a finite cluster. In fact a truncated
chain cannot distinguish between a cluster spanned by the chain functions and the
extended system under consideration. Later it has been found [44] that much faster
convergence could be achieved when the terminator for free electrons was used. Tests
done on large silicon clusters (up to ~ 2000 atoms) have demonstrated the applicability
of this approach to realistic cases. A major problem still to be solved concerns accurate
force calculation, which still requires an exceedingly high number of chain steps to be
performed.
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7 Conclusions

Application of iterative techniques, both in SCF and in Car-Parrinello or Direct
Minimization approaches, has greatly enhanced the scope of first-principles investiga-
tions of real materials[10, 15, 18]. It is now possible to study systems with ~ 100 atoms
in the unit cell, including e.g. superlattices, some alloys and disordered materials,
simple surfaces, small clusters and fullerene systems.

Many interesting physical systems are still beyond the reach of ab-initio methods
based on PW’s and PP’s. In many cases this is due to the presence of atoms, such
as O, F, the rare earths and the transition metals, whose PP’s are very hard. A first
answer to this limitation is coming from ‘ultrasoft” PP’s[45]. This approach is compu-
tationally quite cumbersome but it is becoming increasingly common|[18]. Another idea
is to look for new basis sets, hopefully enjoying the advantages of both PW’s and local-
ized basis sets but without the respective disadvantages. Two proposals have recently
appeared in the literature, ‘adaptive grids’[46] and ‘wavelets’[47]. Both basis sets have
nice properties but their merits in real calculations have to be demonstrated ‘on the
battlefield’.

Many other interesting systems (e.g. amorphous or disordered materials, alloys,
extended defects, carbon microtubules, organic molecules) are described by supercells
that are too big (~ 1000 atoms) for present computers. The development of parallel
computers and of parallelized algorithms can bring some of those systems within reach.
A recent example of the potential of parallel computing has been the study of the
7 x T reconstruction of the Si (111) surface[48]. To the best of my knowledge this is
the largest system (400 atoms) ever studied ab-initio. Eventually the limiting factor
is the unfavourable O(N3,) scaling of the computer effort with the number N, of
atoms. Overcoming such a bottleneck requires new radically different ideas such as
those outlined in Sec. 6.

A Appendix

A.1 Generation of Pseudopotentials

The best way to understand what a pseudopotential is is to follow the steps needed
in its generation. The basic tool is an atomic LDA program. This usually assumes
that the charge density is spherical (a very good approximation even for open-shell
atoms) thus allowing separation of variables into the radial and the angular ones. The
states are classified in exactly the same way as in an introductory course on quantum
mechanics. There is a main quantum number n, an angular momentum [ =0,..,n — 1,
and m = —I[,...,l. The atomic configuration is given in terms of occupation numbers
(traditionally, 1s?2s%2pS....). The radial KS equations are integrated numerically on a
logarithmic grid with one of the many well-known methods (this can be done even on
a personal computer in a few seconds). A reasonable configuration is chosen (usually
the ground-state) and all-electron self-consistent LDA radial wavefunctions ¢;(r) are
obtained.

At this point there are several possible ways to proceed. A very simple and clear
approach is due to Kerker[49]. For each [ in the valence shell a nodeless '* pseudo-

I5This ensures that there are no lower states with the same [. The inner part of pseudo-wavefunctions
is unphysical: orthogonalization to the core states yields meaningless objects.
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wavefunction is constructed in the following way:

K= o) = "

= 7al+16p(7“) T S Te

where p(r) is a polynomial p(r) = a + br? + cr® + dr* whose coefficients are determined
by imposing continuity of ¢}°(r) and its first and second derivatives at the matching
point 7., plus the norm-conservation requirement 3) (see Sec. 4.3). The r. can safely
be taken at the outermost maximum. A ‘dressed’ PP (containing the screening LDA
potential as well) is now obtained by inverting the radial KS equation at the all-electron
eigenvalue ¢;. The final PP is obtained by ‘unscreening’, that is, removal of the LDA
potential generated by valence electrons only.

PP’s are usually obtained in numerical form on a grid, sometimes fitted to an ana-
lytical form like the one used in ref.[24]. However it is also possible to get PP’s directly
in numerical form[50]. Assuming a simple analytic form for the PP’s which depends on
a few parameters {);}, one directly minimizes the following function:

SO =Sl —aP+ 3 [ 60 = 6t ar (45)

or some equivalent form, using one of the standard minimisation methods[14]. The
author has used this procedure for many simple atoms.

A.2 Towards better Pseudopotentials

After the original Hamann, Schliiter, and Chiang paper, many (real or presumed)
improvements and extensions have been proposed. They can be classified according to
their main aim.

1) The first goal is to improve the reliability and accuracy of the PP’s. One should
not forget that a PP is an approximation, albeit a good one, to the true atom (in fact
even worse: an approximation to the frozen-core approximation). In some cases, e.g.
for alkali atoms with one valence electron, the loss of accuracy due to the neglect of non-
linearity in exchange-correlation which is implicit in the unscreening procedure can be
intolerable. In such cases the simple ‘core correction’[51] is very useful. ‘Generalized’[52]
and ‘extended’[53] PP’s have also been proposed to improve transferability. The former
allow the use of unbound atomic states as reference states; the latter have scattering
properties that are correctly reproduced beyond first order in energy differences.

More recent work concerns extension of PP’s to gradient-corrected density function-
als [54] (PP’s should be generated within the same approximation used for subsequent
calculations. Using LDA PP’s in gradient-corrected calculations is inconsistent), and
PP’s for GW and Quantum Monte Carlo calculations[55].

2) The second goal is to improve the computational efficiency of PP’s. An important
step in this direction is due to Kleinman and Bylander[56]. They proposed projecting
the PP on to the reference pseudo-wavefunctions ¢/ in the following way,

ps s
VP = Vigo Vi + Y RGOV ) iy - ey (a6)
T (o 1oVilen”)
where Vi (r) is an arbitrary function. By construction the original PP and the projected
V7 have the same eigenvalues and eigenvectors on the reference states ¢f”. This justifies
the hope that the original and projected PP’s will yield very similar results on other
configurations as well. The Kleinman-Bylander form is much more convenient than the
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conventional form (for reasons that will be explained in Sec. 5.2). Unfortunately it
can happen that spurious states (‘ghosts’) appear at energies which are lower than or
comparable to the reference energy. In such a case the Kleinman-Bylander projection
badly fails. Some recipes have been devised to avoid the ‘ghost’ problem[57].

Another desirable goal is the reduction of the number of PW’s needed for calcula-
tions. This depends on the type of atoms involved. In typical semiconductors (e.g. Si,
Ge, GaAs, AlAs) 100-150 PW’s per atom are sufficient for most applications. However,
many atoms — transition metals, first-row elements like F, O, and to a lesser extent N
and C — are described by strong PP’s, requiring impractically large PW basis sets. One
can try to exploit the many ‘degrees of freedom’ which are present in PP generation to
get softer PP’s. For instance, a rule of thumb states that the larger the matching point
r. is the smoother and less accurate the resulting PP. One can strike a compromise
between accuracy and computer budget by pushing r. outwards. However this will not
give dramatic improvements. If an atom has localised d- or p-states, then in any event
it will require a lot of PW’s. Several recipes have been proposed to get an ‘optimally
smooth” PP (for example by acting on the form of pseudowavefunctions in the inner,
unphysical region). A very simple and effective recipe is described in Ref.[58].

A more radical solution has been proposed by Vanderbilt[45]. His PP’s are quite
different from traditional PP’s: they are definitely much softer, but also much less
straightforward to use. The first interesting application to systems containing Oxygen
and Copper have already appeared[59].
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