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Description of a solid

Let’s consider a periodic solid. We indicate with

RI = Rµ + ds

the equilibrium positions of the atoms. Rµ indicate the Bravais
lattice vectors and ds the positions of the atoms in one unit cell
(s = 1, . . . , Nat).
We take N unit cells with Born-von Karman periodic boundary
conditions. Ω is the volume of one cell and V = NΩ the volume
of the solid.
At time t , each atom is displaced from its equilibrium position.
uI(t) is the displacement of the atom I.
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Within the Born-Oppenheimer adiabatic approximation the
nuclei move in a potential energy given by the total energy of
the electron system calculated (for instance within DFT) at fixed
nuclei. We call

Etot(RI + uI)

this energy. The electrons are assumed to be in the ground
state for each nuclear configuration.
If |uI | is small, we can expand Etot in a Taylor series with
respect to uI . Within the harmonic approximation:

Etot(RI+uI) = Etot(RI)+
∑

Iα

∂Etot

∂uIα
uIα+

1
2

∑

Iα,Jβ

∂2Etot

∂uIα∂uJβ
uIαuJβ+...

where the derivatives are calculated at uI = 0 and α and β
indicate the three Cartesian coordinates.
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Equations of motion
At equilibrium ∂Etot

∂uIα
= 0, so the Hamiltonian of the ions

becomes:

H =
∑

Iα

P2
Iα

2MI
+

1
2

∑

Iα,Jβ

∂2Etot

∂uIα∂uJβ
uIαuJβ

where PI are the momenta of the nuclei and MI their masses.
The classical motion of the nuclei is given by the N × 3× Nat
functions uIα(t). These functions are the solutions of the
Hamilton equations:

u̇Iα =
∂H
∂PIα

ṖIα = − ∂H
∂uIα

Andrea Dal Corso Density functional perturbation theory



Crystal lattice dynamics: phonons
Density functional perturbation theory

Codes for phonon dispersions
q-vectors parallelization: a few ideas

Equations of motion-II

With our Hamiltonian:

u̇Iα =
PIα

MI

ṖIα = −
∑

Jβ

∂2Etot

∂uIα∂uJβ
uJβ

or:

MIüIα = −
∑

Jβ

∂2Etot

∂uIα∂uJβ
uJβ
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The phonon solution

We can search the solution in the form of a phonon. Let’s
introduce a vector q in the first Brillouin zone. For each q we
can write:

uµsα(t) =
1√
Ms

Re
[
usα(q)ei(qRµ−ωqt)

]

where the time dependence is given by simple phase factors
e±iωqt and the displacement of the atoms in each cell identified
by the Bravais lattice Rµ can be obtained from the
displacements of the atoms in one unit cell, for instance the one
that corresponds to Rµ = 0: 1√

Ms
usα(q).
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Characteristic of a phonon - I
A Γ-point phonon has the same displacements in all unit cells
(q = 0):

A zone border phonon with qZB = G/2, where G is a reciprocal
lattice vector, has displacements which repeat periodically
every two unit cells:
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Characteristic of a phonon - II
A phonon with q = qZB/2 has displacements which repeat
every four unit cells:

A phonon at a general wavevector q could be incommensurate
with the underlying lattice:
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The phonon solution-II

Inserting this solution in the equations of motion and writing
I = (µ, s), J = (ν, s′) we obtain an eigenvalue problem for the
3× Nat variables usα(q):

ω2
qusα(q) =

∑

s′β

Dsαs′β(q)us′β(q)

where:

Dsαs′β(q) =
1√

MsMs′

∑

ν

∂2Etot

∂uµsα∂uνs′β
eiq(Rν−Rµ)

is the dynamical matrix of the solid.
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Within DFT the ground state total energy of the solid, calculated
at fixed nuclei, is:

Etot =
∑

i

〈ψi |−
1
2
∇2|ψi〉+

∫
Vloc(r)ρ(r)d3r +EH [ρ]+Exc[ρ]+UII

where ρ(r) is the density of the electron gas:

ρ(r) =
∑

i

|ψi(r)|2

and |ψi〉 are the solution of the Kohn and Sham equations. EH
is the Hartree energy, Exc is the exchange and correlation
energy and UII is the ion-ion interaction. According to the
Hellmann-Feynman theorem, the first order derivative of the
ground state energy with respect to an external parameter is:

∂Etot

∂λ
=

∫
∂Vloc(r)

∂λ
ρ(r)d3r +

∂UII

∂λ
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Deriving with respect to a second parameter µ:

∂2Etot

∂µ∂λ
=

∫
∂2Vloc(r)

∂µ∂λ
ρ(r)d3r +

∂2UII

∂µ∂λ

+

∫
∂Vloc(r)

∂λ

∂ρ(r)
∂µ

d3r

So the new quantity that we need to calculate is the charge
density induced, at first order, by the perturbation:

∂ρ(r)
∂µ

=
∑

i

∂ψ∗
i (r)

∂µ
ψi(r) + ψ∗

i (r)
∂ψi(r)

∂µ

To fix the ideas we can think that λ = uµsα and µ = uνs′β
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The wavefunctions obey the following equation:
[
−1

2
∇2 + VKS(r)

]
ψi(r) = εiψi(r)

where VKS = Vloc(r) + VH(r) + Vxc(r). VKS(r, µ) depends on µ
so that also ψi(r, µ), and εi(µ) depend on µ. We can expand
these quantities in a Taylor series:

VKS(r, µ) = VKS(r, µ = 0) + µ
∂VKS(r)

∂µ
+ . . .

ψi(r, µ) = ψi(r, µ = 0) + µ
∂ψi(r)

∂µ
+ . . .

εi(µ) = εi(µ = 0) + µ
∂εi

∂µ
+ . . .
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Inserting these equations and keeping only the first order in µ
we obtain:

[
−1

2
∇2 + VKS(r)− εi

]
∂ψi(r)

∂µ
= −∂VKS

∂µ
ψi(r) +

∂εi

∂µ
ψi(r)

where: ∂VKS
∂µ = ∂Vloc

∂µ + ∂VH
∂µ + ∂Vxc

∂µ and

∂VH

∂µ
=

∫
1

|r− r′|
∂ρ(r′)

∂µ
d3r ′

∂Vxc

∂µ
=

dVxc

dρ

∂ρ(r)
∂µ

depend self-consistently on the charge density induced by the
perturbation.

Andrea Dal Corso Density functional perturbation theory



Crystal lattice dynamics: phonons
Density functional perturbation theory

Codes for phonon dispersions
q-vectors parallelization: a few ideas

The induced charge density depends only on Pc
∂ψi
∂µ where

Pc = 1− Pv is the projector on the conduction bands and
Pv =

∑
i |ψi〉〈ψi | is the projector on the valence bands. In fact:

∂ρ(r)
∂µ

=
∑

i

Pc
∂ψ∗

i (r)
∂µ

ψi(r) + ψ∗
i (r)Pc

∂ψi(r)
∂µ

+
∑

i

Pv
∂ψ∗

i (r)
∂µ

ψi(r) + ψ∗
i (r)Pv

∂ψi(r)
∂µ

∂ρ(r)
∂µ

=
∑

i

Pc
∂ψ∗

i (r)
∂µ

ψi(r) + ψ∗
i (r)Pc

∂ψi(r)
∂µ

+
∑

ij

ψ∗
j (r)ψi(r)

(
〈∂ψi

∂µ
|ψj〉+ 〈ψi |

∂ψj

∂µ
〉
)
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DFPT

Therefore we can solve the self-consistent linear system:
[
−1

2
∇2 + VKS(r)− εi

]
Pc

∂ψi(r)
∂µ

= −Pc
∂VKS
∂µ

ψi(r)

where
∂VKS
∂µ

=
∂Vloc

∂µ
+

∂VH

∂µ
+

∂Vxc

∂µ

and
∂ρ(r)
∂µ

=
∑

i

Pc
∂ψ∗

i (r)
∂µ

ψi(r) + ψ∗
i (r)Pc

∂ψi(r)
∂µ
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Dynamical matrix at finite q - I
The dynamical matrix is:

Dsαs′β(q) =
1√

MsMs′

∑

ν

e−iqRµ
∂2Etot

∂uµsα∂uνs′β

∣∣∣∣
u=0

eiqRν .

Inserting the expression of the second derivative of the total
energy we have (neglecting the ion-ion term):

Dsαs′β(q) =
1√

MsMs′

[
1
N

∫

V
d3r

∑

µν

(
e−iqRµ

∂2Vloc(r)
∂uµsα∂uνs′β

eiqRν

)
ρ(r)

+
1
N

∫

V
d3r

(
∑

µ

e−iqRµ
∂Vloc(r)
∂uµsα

)(
∑

ν

∂ρ(r)
∂uνs′β

eiqRν

)]
.

We now show that these integrals can be done over Ω.
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Dynamical matrix at finite q - II

Defining:

∂2Vloc(r)
∂u∗sα(q)∂us′β(q)

=
1√

MsMs′

∑

µν

e−iqRµ
∂2Vloc(r)

∂uµsα∂uνs′β
eiqRν

we can show (see below) that ∂2Vloc(r)
∂u∗

sα(q)∂us′β(q) is a lattice-periodic
function. Then we can define

∂ρ(r)
∂us′β(q)

=
1√
Ms′

∑

ν

∂ρ(r)
∂uνs′β

eiqRν

and show that ∂ρ(r)
∂us′β(q) = eiqr ∂̃ρ(r)

∂us′β(q) , where ∂̃ρ(r)
∂us′β(q) is a

lattice-periodic function.
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Dynamical matrix at finite q - III
In the same manner, by defining

(
∂Vloc(r)
∂usα(q)

)∗
=

1√
Ms

∑

µ

e−iqRµ
∂Vloc(r)
∂uµsα

and showing that ∂Vloc(r)
∂usα(q) = eiqr ˜∂Vloc(r)

∂usα(q) , where
˜∂Vloc(r)

∂usα(q) is a
lattice-periodic function, we can write the dynamical matrix at
finite q as:

Dsαs′β(q) =

∫

Ω
d3r

∂2Vloc(r)
∂u∗sα(q)∂us′β(q)

ρ(r)

+

∫

Ω
d3r

(
˜∂Vloc(r)

∂usα(q)

)∗ (
∂̃ρ(r)

∂us′β(q)

)
.
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Dynamical matrix at finite q - IV

∂2Vloc(r)
∂u∗sα(q)∂us′β(q)

=
1√

MsMs′

∑

µν

e−iqRµ
∂2Vloc(r)

∂uµsα∂uνs′β

∣∣∣∣
u=0

eiqRν

is a lattice-periodic function because the local potential can be
written as Vloc(r) =

∑
µ

∑
s vs

loc(r− Rµ − ds − uµs), and
∂2Vloc(r)

∂uµsα∂uνs′β
vanishes if µ '= ν or s '= s′. Since µ = ν the two

phase factors cancel, and we remain with a lattice-periodic
function:

∂2Vloc(r)
∂u∗sα(q)∂us′β(q)

=
δs,s′

Ms

∑

µ

∂2vs
loc(r− Rµ − ds − uµs)

∂uµsα∂uµsβ

∣∣∣∣
u=0

.
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Dynamical matrix at finite q - V

In order to show that:

∂ρ(r)
∂us′β(q)

=
1√
Ms′

∑

ν

∂ρ(r)
∂uνs′β

eiqRν = eiqr ∂̃ρ(r)
∂us′β(q)

where ∂̃ρ(r)
∂us′β(q) is a lattice-periodic function, we can calculate the

Fourier transform of ∂ρ(r)
∂us′β(q) and show that it is different from

zero only at vectors q + G, where G is a reciprocal lattice
vector. We have

∂ρ

∂us′β(q)
(k) =

1
V

∫

V
d3r e−ikr 1√

Ms′

∑

ν

∂ρ(r)
∂uνs′β

eiqRν .
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Dynamical matrix at finite q - VI
Due to the translational invariance of the solid, if we displace
the atom s′ in the direction β in the cell ν = 0 and probe the
charge at the point r, or we displace in the same direction the
atom s′ in the cell ν and probe the charge at the point r + Rν ,
we should find the same value. Therefore

∂ρ(r + Rν)

∂uνs′β
=

∂ρ(r)
∂u0s′β

or, taking r = r′ − Rν , we have ∂ρ(r′)
∂uνs′β

= ∂ρ(r′−Rν)
∂u0s′β

which can be
inserted in the expression of the Fourier transform to give:

∂ρ

∂us′β(q)
(k) =

1
V

∫

V
d3r e−ikr 1√

Ms′

∑

ν

∂ρ(r− Rν)

∂u0s′β
eiqRν .
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Dynamical matrix at finite q - VII
Changing variable in the integral and setting r′ = r− Rν , we
have

∂ρ

∂us′β(q)
(k) =

1
V

∫

V
d3r ′e−ikr′ 1√

Ms′

∑

ν

∂ρ(r′)
∂u0s′β

ei(q−k)Rν .

The sum over ν:
∑

ν ei(q−k)Rν gives N if k = q + G and 0
otherwise. Hence ∂ρ

∂us′β(q)(k) is non-vanishing only at
k = q + G. It follows that:

∂ρ(r)
∂us′β(q)

= eiqr
∑

G

∂ρ

∂us′β(q)
(q + G)eiGr

and the sum over G gives a lattice-periodic function.
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Properties of the wavefunctions: Bloch theorem
According to the Bloch theorem, the solution of the Kohn and
Sham equations in a periodic potential VKS(r + Rµ) = VKS(r):

[
−1

2
∇2 + VKS(r)

]
ψkv (r) = εkvψkv (r)

can be indexed by a k-vector in the first Brillouin zone and by a
band index v , and:

ψkv (r + Rµ) = eikRµψkv (r),

ψkv (r) = eikrukv (r),

where ukv (r) is a lattice-periodic function. By time reversal
symmetry, we also have:

ψ∗
−kv (r) = ψkv (r).
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Charge density response at finite q - I
The lattice-periodic part of the induced charge density at finite
q can be calculated as follows. We have:

∂ρ(r)
∂us′β(q)

=
1√
Ms′

∑

kv

[
Pc

(
∑

ν

∂ψ∗
kv (r)

∂uνs′β
eiqRν

)
ψkv (r)

+ ψ∗
kv (r)Pc

(
∑

ν

∂ψkv (r)
∂uνs′β

eiqRν

)]
.

Changing k with −k in the first term, using time reversal
symmetry ψ−kv (r) = ψ∗

kv (r), and defining:

∂ψkv (r)
∂us′β(q)

=
1√
Ms′

∑

ν

∂ψkv (r)
∂uνs′β

eiqRν ,
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Charge density response at finite q - II

we have:
∂ρ(r)

∂us′β(q)
= 2

∑

kv

ψ∗
kv (r)Pc

∂ψkv (r)
∂us′β(q)

.

We can now use the following identities to extract the periodic
part of the induced charge density:

∂ψkv (r)
∂us′β(q)

= eikr ∂ukv (r)
∂us′β(q)

= eikr 1√
Ms′

∑

ν

∂ukv (r)
∂uνs′β

eiqRν

= ei(k+q)r ∂̃ukv (r)
∂us′β(q)

,

where ∂̃ukv (r)
∂us′β(q) is a lattice-periodic function.
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Charge density response at finite q - III
The projector in the conduction band Pc = 1− Pv is:

Pc =
∑

k′c

ψk′c(r)ψ∗
k′c(r

′)

=
∑

k′c

eik′ruk′c(r)u∗k′c(r
′)e−ik′r′

=
∑

k′

eik′rPk′
c e−ik′r′ ,

but only the term k′ = k + q gives a non zero contribution when
applied to ∂ψkv (r)

∂us′β(q) . We have therefore:

∂ρ(r)
∂us′β(q)

= eiqr2
∑

kv

u∗kv (r)Pk+q
c

∂̃ukv (r)
∂us′β(q)

,

Andrea Dal Corso Density functional perturbation theory



Crystal lattice dynamics: phonons
Density functional perturbation theory

Codes for phonon dispersions
q-vectors parallelization: a few ideas

Charge density response at finite q - IV

so the lattice-periodic part of the induced charge density,
written in terms of lattice-periodic functions is:

∂̃ρ(r)
∂us′β(q)

= 2
∑

kv

u∗kv (r)Pk+q
c

∂̃ukv (r)
∂us′β(q)

.
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First-order derivative of the wavefunctions - I
∂̃ukv (r)
∂us′β(q) is a lattice-periodic function which can be calculated
with the following considerations. From first order perturbation
theory we get, for each displacement uνs′β, the equation:

[
−1

2
∇2 + VKS(r)− εkv

]
Pc

∂ψkv (r)
∂uνs′β

= −Pc
∂VKS(r)
∂uνs′β

ψkv (r).

Multiplying every equation by 1√
Ms′

eiqRν and summing on ν, we
get:

[
−1

2
∇2 + VKS(r)− εkv

]
Pc

∂ψkv (r)
∂us′β(q)

= −Pc
∂VKS(r)
∂us′β(q)

ψkv (r).
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First-order derivative of the wavefunctions - II

Using the translational invariance of the solid we can write

∂VKS(r)
∂us′β(q)

=
1√
Ms′

∑

ν

∂VKS(r)
∂uνs′β

eiqRν = eiqr ∂̃V KS(r)
∂us′β(q)

,

where ∂̃V KS(r)
∂us′β(q) is a lattice-periodic function. The right-hand side

of the linear system becomes:

−ei(k+q)rPk+q
c

∂̃V KS(r)
∂us′β(q)

ukv (r).
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First-order derivative of the wavefunctions - III
In the left-hand side we have

Pc
1√
Ms′

∑

ν

∂ψkv (r)
∂uνs′β

eiqRν = ei(k+q)rPk+q
c

∂̃ukv (r)
∂us′β(q)

,

and defining

Hk+q = e−i(k+q)r
[
−1

2
∇2 + VKS(r)

]
ei(k+q)r,

we obtain the linear system:

[
Hk+q − εkv

]
Pk+q

c
∂̃ukv (r)
∂us′β(q)

= −Pk+q
c

∂̃V KS(r)
∂us′β(q)

ukv (r).
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Linear response: the self-consistent potential - I
The lattice-periodic component of the self-consistent potential
can be obtained with the same techniques seen above. We
have:

∂VKS(r)
∂uνs′β

=
∂Vloc(r)
∂uνs′β

+

∫
d3r ′

1
|r− r′|

∂ρ(r′)
∂uνs′β

+
∂Vxc

∂ρ

∂ρ(r)
∂uνs′β

.

Multiplying by 1√
Ms′

eiqRν and adding, we obtain:

∂VKS(r)
∂us′β(q)

=
∂Vloc(r)
∂us′β(q)

+

∫
d3r ′

1
|r− r′|

∂ρ(r′)
∂us′β(q)

+
∂Vxc

∂ρ

∂ρ(r)
∂us′β(q)

.

Andrea Dal Corso Density functional perturbation theory



Crystal lattice dynamics: phonons
Density functional perturbation theory

Codes for phonon dispersions
q-vectors parallelization: a few ideas

Linear response: the self-consistent potential - II
Keeping only the lattice periodic parts gives:

eiqr ∂̃V KS(r)
∂us′β(q)

= eiqr ∂̃V loc(r)
∂us′β(q)

+

∫
d3r ′

1
|r− r′|e

iqr′ ∂̃ρ(r′)
∂us′β(q)

+
∂Vxc

∂ρ
eiqr ∂̃ρ(r)

∂us′β(q)
,

or equivalently:

∂̃V KS(r)
∂us′β(q)

=
∂̃V loc(r)
∂us′β(q)

+

∫
d3r ′

1
|r− r′|e

iq(r′−r) ∂̃ρ(r′)
∂us′β(q)

+
∂Vxc(r)

∂ρ

∂̃ρ(r)
∂us′β(q)

.
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ph.x

The program ph.x solves this self-consistent linear system for
3× Nat perturbations at a fixed vector q. With ∂ρ(r)

∂us′β(q) for all
perturbations, it calculates the dynamical matrix

Dsαs′β(q)

at the given q as discussed above. Diagonalizing this matrix we
obtain 3× Nat frequencies ωq. By repeating this procedure for
several q we could plot ωq as a function of q and display the
phonon dispersions. However, it is more convenient to adopt a
different approach that requires the calculation of the dynamical
matrix in a small set of vectors q.
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Phonon dispersions
The dynamical matrix of the solid:

Dsαs′β(q) =
1√

MsMs′

∑

ν

∂2Etot

∂uµsα∂uνs′β
eiq(Rν−Rµ) (1)

is a periodic function of q with Dsαs′β(q + G) = Dsαs′β(q) for
any reciprocal lattice vector G. Furthermore, due to the
translational invariance of the solid, it does not depend on µ.
Eq.1 is a Fourier expansion of a three dimensional periodic
function. We have Fourier components only at the discrete
values Rν of the Bravais lattice and we can write:

1√
MsMs′

∂2Etot

∂uµsα∂uνs′β
=

Ω

(2π)3

∫
d3qDsαs′β(q)e−iq(Rν−Rµ).

(2)
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Discrete Fourier transform

We can use the properties of the discrete Fourier transform and
sample the integral in a uniform mesh of q vectors. This will
give the inter-atomic force constants only for a certain range of
values of Rν neighbors of Rµ.
In order to recall the main properties of the discrete Fourier
transform, let us consider a one dimensional periodic function
f (x + a) = f (x) with period a. This function can be expanded in
a Fourier series and will have a discrete set of Fourier
components at kn = 2π

a n, where n is an integer (positive,
negative or zero).

f (x) =
∑

n
cneiknx

where the coefficients of the expansion are:
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Discrete Fourier transform - II

cn =
1
a

∫ a

0
f (x)e−iknxdx .

In general, if f (x) is a sufficiently smooth function, cn → 0 at
large n. Now suppose that we discretize f (x) in a uniform set of
N points xj = j∆x where ∆x = a/N and j = 0, . . . , N − 1, then
we can calculate:

c̃n =
1
N

N−1∑

j=0

f (xj)e−i 2π
N nj ,

c̃n is a periodic function of n and c̃n+N = c̃n. So, if N is
sufficiently large that cn = 0 when |n| ≥ N/2, c̃n is a good
approximation of cn for |n| < N/2 and the function
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Discrete Fourier transform - III

f (x) =

n=N/2∑

n=−N/2

c̃neiknx

is a good approximation of the function f (x) also on the points
x different from xj . In three dimensions the discretization of
Eq. 2 on a uniform mesh of qi vectors is:

∂2Etot

∂uµsα∂uνs′β
=

1
Nq

Nq∑

i=1

Csαs′β(qi)e−iqi (Rν−Rµ),

where we defined Csαs′β(q) =
√

MsMs′Dsαs′β(q). Since
∂2Etot

∂uµsα∂uνs′β
depends only on the vector R = Rµ−Rν , we can call
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q2r.x

Csαs′β(R) = ∂2Etot
∂uµsα∂uνs′β

and write the relationship:

Csαs′β(R) =
1

Nq

Nq∑

i=1

Csαs′β(qi)eiqi R.

The code q2r.x reads a set of dynamical matrices obtained for
a uniform mesh of qi vectors and calculates, using this
equation, the inter-atomic force constants for some neighbors
of the point R = 0.
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matdyn.x

If the dynamical matrix is a sufficiently smooth function of q, the
inter-atomic force constants decay sufficiently rapidly in real
space and we can use Eq. 1 limiting the sum over ν to the few
neighbors of Rµ for which we have calculated the inter-atomic
force constants. With the present notation Eq. 1 becomes:

Csαs′β(q) =
∑

R

Csαs′β(R)e−iqR, (3)

a relationship that allows the interpolation of the dynamical
matrix at arbitrary q, by a few inter-atomic force constants. The
program matdyn.x reads the inter-atomic force constants
calculated by q2r.x and calculates the dynamical matrices at
an arbitrary q using this equation.
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This procedure fails in two cases:

In metals when there are Kohn anomalies. In this case
Dsαs′β(q) is not a smooth function of q and the inter-atomic
force constants are long range.
In polar insulators where the atomic displacements
generate long range electrostatic interactions and the
dynamical matrix is non analytic for q → 0. This case,
however, can be dealt with by calculating the Born effective
charges and the dielectric constant of the material.
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Use of symmetry

Phonon dispersions require the DFPT calculation on a uniform
mesh Nq1 × Nq2 × Nq3 = Nq of q vectors. The CPU time can be
roughly estimated as

Nq × 3× Nat × Tscf

where Tscf is the CPU time of a single self-consistent
calculation. Using symmetry the q-vector mesh is reduced to a
set of N̄q non equivalent q vectors. The calculation of the
dynamical matrix at each q vector requires an amount of CPU
time roughly proportional to the size of its star of q vectors. So
low symmetry q vectors require much more CPU time than high
symmetry q vectors mainly because ph.x uses only the
symmetries of the small group of q to reduce the k points.
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Use of symmetry - II

On the other hand, from the dynamical matrix at q we can
obtain, for free, the dynamical matrices of the star of q that is
larger for low symmetry q. Not all the 3× Nat perturbations
have to be calculated simultaneously at each q. Choosing
displacement patterns that transform according to an
irreducible representation (irrep) of the small group of q, the
number of patterns that transform among themselves is equal
to the dimension of the irreducible representation. For standard
point groups the maximum dimension is 3, while for q at zone
border and nonsymmorphic point groups the maximum
dimension could be larger, up to 6.
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q-vectors parallelization
The phonon code is parallelized as the pw.x code: reciprocal
lattice vectors G can be distributed among CPUs and/or k
vectors used for the integration over the Brillouin zone can be
distributed among pools of CPUs. In addition, it is possible to
calculate in parallel the contribution to the dynamical matrix of
each irrep for each q vector.
Different q vectors might require quite different CPU time so the
dynamical matrix of each q vector is calculated independently.
The two input parameters start_q and last_q allow the
choice of the q vector in the list of N̄q vectors. To parallelize
only on q vectors it is convenient to send many runs on different
CPUs with different outdir directories. Preliminarily, the
outdir produced by pw.x has to be copied in all the outdir
directories where ph.x will run.
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q vectors and irreps parallelization

q vectors and irreps parallelization is slightly more complex
because each run must use the same displacement patterns.
Therefore, after running pw.x, a preliminary run of ph.x with
the two flags start_irr=0 and last_irr=0 calculates and
saves on disk the displacement patterns for all q vectors and
irreps. Then ph.x can run separately on different machines or
on different CPUs. Each run calculates one or more irrep as
specified by the four variables start_q, last_q, start_irr,
last_irr. The outdir produced by pw.x and by the
preliminary run of ph.x has to be copied in all the outdir
directories where ph.x will run.
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Collecting the results

After running ph.x for all q vectors and all irreps the results are
collected in a single outdir directory and ph.x is run again to
produce the dynamical matrices. The files with the
contributions of the irreps to the dynamical matrix are in the
outdir/_phprefix.phsave directories and are called
data-file.xml.#iq.#irr. All these files have to be copied
in one outdir/_phprefix.phsave directory and ph.x must
be run on this outdir without any flag. Note that if the file
data-file.xml.#iq.#irr for some q-vector or for some
irreps is missing ph.x will recalculate the missing contribution
to the dynamical matrix.
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