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FOREWORD BY THE AUTHOR

These notes are designed to provide a basic introduction to the computational technique of Density
Functional Theory (DFT) for the solution of complex many-body problems in condensed matter
physics to complete neophytes in the field. The notes are designed to be self-contained and, apart
from familiarity with elementary Quantum Mechanics and the Sommerfeld Free electron model for
metals, no previous knowledge on methods for electronic structure calculations in solids is
assumed. A brief introductory overview of the concepts of exchange and correlation effects between
electrons, the Hartree-Fock Theory of solids and other theoretical background topics which tie quite
naturally with the discussion on DFT, is offered in the first section of the document. As a word of
caution, | cannot guarantee that the material presented in these notes is either complete or entirely
accurate, and indeed it is not intended to be used as a substitute for consulting the relevant
literature on the subject listed at the end of the document. If you have any suggestions for
corrections and/or improvements, please e-mail me at: g.mognil@physics.ox.ac.uk
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1. RECAPITULATION ON THE THEORY OF INDISTINGUISHEABLE
PARTICLES AND EXCHANGE FORCES

Itis a well known theorem in Quantum Mechanics that for an ensemble of N identical

(indistinguisheable) particles, the N-particle Hamiltonian H,, remains unvaried under the exchange
of any two particle labels i and j, and can be therefore expressed as an “eigenfunction” of the

~

particle-exchange operator F’ij with eigenvalue +1:

PG, )= Hy (,i) = +1H, (i, ) (1.1)

H, is said to be exchange-symmetric. Consequently, for identical particles, the operation of

particle exchange cannot affect the overall particle probability density:
- 2 - 2 o . . .. ..
[Py @ D) = G =By ()= (J0) =% ¥y (i, J) (1.2)

The N-particle wavefunction W (i, j) is therefore also required to have exchange-symmetry and be

an eigenfunction of IE’; with an eigenvalue of either +1 (in which case ¥ (i, J) is said to be
exchange-symmetric) or -1 (exchange-antisymmetric). This leads to the well-known separation of the
physical properties of identical particles into the two categories of Bosons (¥ (i, J) exchange-
symmetric, integer spin quantum numbers) and Fermions (‘¥ (i, J) exchange-antisymmetric, half-

integer spin quantum numbers). Here we shall deal exclusively with identical spin-1/2 fermions and
investigate the consequences of their indistiguisheability in the context of the electronic properties
of metals.

The most general linear combination of the N occupied orthonormal single-particle wavefunctions
v, (ﬁaj) =g (FJ))(I (o;) (where ¢, (FJ) and y,(o;) denote respectively the spatial and spin parts

of the ith eigenstate for particle j) for a system of N identical fermions which is antisymmetric under
the exchange of any two particle labels is given by the determinant (known as the Slater
determinant) of the following NxN square matrix:

‘//1(F1'O-1) Wl(rz’az) l)”]_(W’O-N)
v »

JNT

¥, = .
l//N (q’o-]_) Yn (r_N”O-N)

where the 1/\/ N ! factor in front ensures that the wavefunction is correctly normalized to unity. The

Slater determinant can also be written more compactly as:

=

- — — 1
Yy :A{z//l(rl,al),y/z(rz,az) ..... y/N(rN,aN)} where A:Wi (_1)pl P (1.4)
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where in the expression for A (known as the antisymmetrization operator), Pi represents the ith
permutation of the electronic coordinates (N! permutations in total) and (—l) " is +1 if the

permutation is even and -1 if the permutation is odd)

The exchange-antisymmetry of ¥ follows from the general property of determinants that if any

two columns (corresponding to two different particle labels in this case) are interchanged, then the
determinant changes sign. Furthermore, the other general property that if any two rows of a
determinant are equivalent then the determinant is automatically zero leads to the Pauli Exclusion

Principle: for ¥/, to be non-zero, no two identical fermions can lie in the same single-particle state

and consequently have the same set of Quantum Numbers.

For N=2, it turns out that the spatial componenent (I)Zi and spin component XZi of the total

wavefunction ¥, can each be written in exchange-symmetric (+) and antisymmetric (-) forms:

if a=b (1.5)

o ()=t (E)%(E)gfa (r)dh ()
ms =+1-| 7). 71),
X, (S=1) —>m, =O_>1/\/E(‘Z¢>1‘Z¢>2 +‘Z¢>1‘ZT>2) (1.6)

ms =17, %),

X, (§=0,m; =0) 21/\/5(‘)(01‘;(»2 _‘Z¢>1‘XT>2) (1.7)

where the three distinct symmetric eignstates (1.6) for the total spin quantum number S=1 are
commonly referred to as “spin-triplet’”, whereas the antisymmetric one (1.7) for S=0 as “spin-
singlet”’. The spatial and spin wavefunctions can be combined together following the requirement

that ¥, must be overall exchange-antisymmetric. Therefore one can have either ¥, = ®,X; or

¥, =dlX;.

The simulatenous probability of finding the two identical fermions at the same point in space

n=r =ris given by:
- — 2
PO (r) = |, (r.1) (L8)

Therefore, depending on whether ¥, = ®,X; or ¥, = ®, X, , we have the following two

possibilities:

! ~ 2|~
e Casel: ¥,=0,X, > ‘CDQ(r, I’)‘ =2|¢, (r)‘ M(r)‘ : the probability of finding the two

fermions at the same point in space is enhanced by a factor of two with respect to the case
of distinguisheable particles (for which there is no exchange-symmetry requirement on the
many-body wavefunction, which can therefore be written as a simple product of the single



particle wavefunctions). The antisymmetry requirement for ¥, has therefore indirectly

introduced a new attractive force between the two fermions, termed exchange-force (or
exchange-interaction), which is never observed for distinguisheable particles.

- -2
o Case2: ¥,=0,X; > ‘d);(r, r)‘ = 0: the probability of finding the two fermions at the

same point in space is null, which means that in this case the two fermions experience a
repulsive exchange force.

As a result of the presence of this exchange force, the motion of the two identical fermions is said to
be correlated. In the case of distinguishebeable particles on the other hand, their individual
motions are still Quantum Mechanical but remain uncorrelated and the particles behave
independently.

This type of correlation is observed even in the absence of direct particle-particle interactions (e.g.
Coulomb electrostatic forces). If the two identical particles do not mutually interact, the exchange

force has no impact on the total energy of the system E, (which will then still given by the sum of

the two single-particle energies & and &, ). If on the other hand the s=1/2 fermions are taken to be

electrons and the repulsive Coulomb interaction between them is suddenly switched on (without
modifying the single-particle wavefunctions), the exchange force has the effect of splitting the total
energy into two values, depending on whether the two-electron system is found to lie in a spin
singlet or triplet state. For the spin singlet state, the attractive exchange force has in fact the effect
of destabilizing the system and raising the overall Coulomb potential energy, and vice versa for the
spin triplet state. As a result, all other things being equal, the exchange interaction produces an
energetic preference for the Spin Triplet states. This change in energy attributable to the exchange
forces is known as the exchange energy. The Coulomb force by itself is always repulsive, and

therefore increases E, by a constant amount called Hartree (or direct) energy.

The Exchange and Hartree energies are easy to calculate analytically for the case of two interacting
electrons. We start from the expression for the total Hamiltonian for the two-electron system:

2

o~ 2 h2 ) e
A=% - vel & (19)
S\ 2m, 4725, |1~ |

! hn-n
YA

where the first term is the non-interacting part of the Hamiltonian (in this case just the sum of the
kinetic energies of the two electrons-no external potential is assumed to be acting on the system),
and the second term is the repulsive Coulomb potential energy. Since both the Hartree and

exchange energies arise from the Coulomb term of the Hamiltonian, their values can be calculated

by taking its expectation value for the two types of spatial wavefunctions d)zi :

(1.10)

o - e%_a‘ ) where (D;(;l,;z):@(E)@(E)j;a@mb(ﬁ)
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The Hartree energy arises from the terms in the inner product that do not depend on the sign of @,

80 [ =

1
5% (14, ()4, ()4 (0) =2

Since the particles are identical, the two terms above are equal:

Hanree

.|'drdr

= d‘ .2

The exchange energy on the other hand emerges from the sign-dependent cross terms:

_§¢;(ﬁ)¢;(6)¢b(ﬁ)¢a )
%%*(w;@c»a () (1)

For the same reason as above, the two terms above are equivalent, and so:

Exchange +Id3rd3r2¢ (r )% (r)

4re

o] r1 2

‘%(f)¢ (1)

Adding all the various contributions, we obtain the total energy E,:

E; = (@}

2

2
£\ _ p|
2> - z 2 + EHartree T EExchange

i—1 A

(1.11)

(1.12)

(1.13)

(1.14)

(1.15)

The exchange forces therefore introduce the spin-dependence on E, illustrated in the energy-level

diagram of fig 1.1:

Fig 1.1: Energy level diagram showing the splitting of the total two-electron energy due to the exchange

interaction
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2. EXPANDING THE PROBLEM TO A REAL CRYSTALLINE SOLID

Our starting point is the hamiltonian for the system of N electrons and M positively-charged nuclei
(orions) in a crystalline solid, neglecting all relativistic and magnetic effects:

| J

2 N N,M Ze |¢j g2 M h2 1I¢J Zze2
Vz2- ! —_—) — Vi) S 2.1
Z Z Z‘ri_rj‘ ZZM, '+22R R (2.1)

2m, = i1l —R ‘ i =) 13

where the electrons are denoted by lower case subscripts and the nuclei, with charge Z, and mass
M, are denoted by upper case subscripts. The terms of the Hamiltonian represent, from left to
right, the kinetic energy of the electrons, the attractive potential acting on the electrons due to the
nuclei, the repulsive electron-electron interaction, the kinetic energy of the nuclei and finally the
repulsive internuclear electrostatic interaction ( in this and the inter-electron interaction terms, the
factor of %5 in front is introduced to avoid double-counting of particle pairs whereas the upper
condition in the sums is to exclude unphysical self-interactions). This general form is still valid if the
bare nuclear Coulomb interaction is replaced by a pseudopotential that takes into account effects of
core electrons. From a fundamental point of view it is impossible to calculate the electronic
properties of a metal analytically by such an elementary equation as (2.1) because of the
enormously complicating effects of the interactions between electrons. The issue central to the
theory of electronic structure is therefore the development of approximate methods using
simplifying physical ideas to treat electronic interactions and correlations with sufficient accuracy
that one can predict the diverse array of phenomena exhibited by matter, starting from (2.1).

There is only one type of term in the general hamiltonian that can be regarded as "small",

the inverse mass of the nuclei 1/M.. If we first set the mass of the nuclei to infinity, then the kinetic
energy of the nuclei can be ignored. This is the Bom-Oppenhcimer or adiabatic approximation,
which is an excellent approximation for many purposes. The final term, the electrostatic nucleus-
nucleus (or ion-ion) interaction, is essential in the total energy calculation, but is only a classical
additive term if the nuclei are assumed fixed and can therefore be neglected. Thus we shall focus on
the hamiltonian for the electron cloud of the crystal only, in which the positions of the nuclei are
fixed at the points R of the underlying Bravais lattice of the crystal structure.

The fundamental N-electron Schroedinger equation for the theory of electronic structure in a metal
can therefore be reduced to:

I¢J

i( Vi +V|0n(r)j z‘ ‘ ( 0-1’ 1Oy rN’O-N) E\P( 01,1, O'z---E’O'N)
i r—r
5

where V,_ (r)= Z‘
=3

2
R
(2.2)



3. THE HARTREE EQUATIONS

The proper choice of the potential U(r) appearing in the Schroedinger equation for just one of the
electrons considered above

7 SR -
—mvzl//(fHU (Ny(r) =ey(r) (3.2)

e

is a subtle problem. Underlying this problem is the question of how best to represent the effects of
electron-electron interactions. One simplifying idea is suggested by asking what choice of U(r) would
make equation (3.1) least unreasonable. Evidently U(r) should include the potentials of the ions:

(M) =-2e"> -
Uion r)=-Ze r— (3.2)
1=1 I’—Rl‘

The inter-electron interactions can of course be ignored altogether under the so-called
“independent electron approximation’, which leads to the well established Sommerfeld Free
electron model®. It is most productive however to incorporate (at least approximately) the fact that
the electron feels the electric fields of all the other electrons when seeking an expression for U(r). If
we treated the remaining electrons as a smooth distribution of negative charge with charge density
p, the potential energy of the given electron in their field would be:

U, (r)=—e[drp(r ')ﬁ (3.3)

The contribution of an electron in the level ; (we let i stand for both the spin and orbital quantum
numbers of the one-electron level) to the charge density would be:

- ~ 2
p,(1) =—ely, ()| (3.4
The total electronic charge density would then be:
- —2
o(r) = —eZ‘lpi (r)‘ (3.5)
i
where the sum extends over all occupied one-electron states in the metal

Placing (3.5) in (3.3) and letting U (F) =U, (F) +U (F) we arrive at the following one-electron

ion

Schroedinger equation:

! The reader unfamiliar with the independent-electron approximation and the free electron gas model of
metals should refer to chapters 2 and 3 of Ref. 1
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2m

- - - -, =2 1 . -
V2 (1) + U (N (0)+| € [Ty, (7) W v, =sw,(f)  (3.6)
e i -
The set of equations (3.6) (there is one for each occupied one-electron level y; (F) ) is known as the

Hartree equations. These nonlinear equations for the one-electron wave functions and energies are

solved, in practice, by iteration: a form is guessed for U (F) (the term in brackets in (3.6)) on the
basis of which the equations are solved. A new U (F) is then computed from the resulting wave

functions, y; (F) , and the new Schroedinger equation is solved once again. Ideally, the procedure is

continued until further iterations do not materially alter the potential (for this reason the Hartree
approximation is also known as the "self-consistent field approximation").

The Hartree approximation fails to represent the way in which the particular (as opposed to the
average) configuration of the other N - 1 electrons affects the electron under consideration, for Eq.
(3.6) describes the electron as interacting only with the field obtained by averaging over the
positions of the remaining electrons (with a weight determined by their wave functions). As crude
an approximation as this is to the full Schroedinger equation (2.2), it still leads to a mathematical
task of considerable numerical complexity.

The most significant shortcoming of the Hartree approximation however is of physical rather than
computational nature. The inadequacy emerges if we return to the exact N-electron Schrodinger
equation, eq. (2.2), and cast it into the equivalent variational form, which asserts that a solution to

(2.2) is given by any state ‘¥, that makes stationary the quantity:
—~ Y,IH,¥Y
<HN>=EN=—< LIS (3.7)
(P [Py)

where the denominator ensures that the wavefunctions have been properly normalized. In

particular, the ground-state wave function is that ‘¥, that minimizes (3.7). It can be shown that the

Hartree equations (3.6) follow from minimizing (3.7) over a ¥ of the form:

V(0,000,050 o) =y (0, o)y, (1, 04)-. (N, o) (3.8)

where the ;(I;,0;) are a set of N orthonormal one-electron wave functions. Thus the Hartree

equations give the best approximation to the full N-electron wave function that can be represented
as a simple product of one-electron levels.

The wave function (3.8), however, is incompatible with the requirement of exchange-antisymmetry

for the ¥, of an ensemble of identical fermions such as the sea of electrons in a crystal:

Oy, oy) ==Y (1,00 ..., 0. 6,04 Ty, O)

10



4. THE HARTREE-FOCK APPROXIMATION

The simplest generalization of the Hartree approximation that incorporates the exchange-
antisymmetry requirement (3.9) is to replace the trial wave function (3.8) by a Slater determinant
(see Eq. (1.3)) of N orthonormal one-electron wave functions to be determined. This is the starting
point for a new attempt at estimating the ground state energy of a N-electron system commonly
referred to as thee Hartree-Fock (HF) approximation. The lowest energy N-particle state which can

be written as a Slater determinant is therefore called the HF ground state wavefunction ¥ ™" . Like
the simple Hartree theory, the HF method is only approximative as the true (exact) ground-state

wavefunction for the system of electrons in a real crystal generally assumes forms much more
complicated than a simple Slater Determinant. To determine the unknown single particle

wavefunctions and consequently ¥ HF we first need to evaluate the total energy E\ via (3.7),

which we will then later minimize to obtain the HF ground state energy E, A7 In essence, the

derivation of the HF equations that follows can be viewed as a generalization of the computation of
the exchange energy for 2 electrons given at the end of section 1 to the case of N electrons. From
now on, we shall assume that all N electrons in the crystal have parallel spin, since as explained in
section 1, this is the spin configuration that minimizes the total energy of the system in the presence
of inter-electron Coulomb interactions.

The first step consists in evaluating the part of the inner product in the numerator of (3.7) involving
the non-interacting part of the Hamiltonian of the N-electron system (2.2), which can be written

simply as a sum of one-electron hamiltonians:

(4.1)

where the compact notation for the Slater determinant (Eq. (1.4)) has been used. It turns out that
the N! terms in the determinant on the LHS all make the same contribution to the sum. This can be
seen by considering for example the second term in the determinant on the LHS, which involves an
odd permutation of electron coordinates 1 and 2 and is therefore preceded by a minus sign:

i<_l//1(F2'O—z)rl//z(Flro_1)----l//N (FN o) ﬁ(E)A{Wl(FllO—l)!l/lz(ino_Z)""'//N (FN 1ON )}>

=1

:<—(//1(F2,02),1//2(F1,01)....l//N (FN!O-N) (ﬁ(ﬁ)+ﬁ(g)+ ------ )ﬁ(‘/ﬁ(ﬁvU1)vV/z(FZvO-2)----l//N (FNYO-N)_‘/ll(FZ'O-Z)'l//Z(Fllal)""(//N (FNuo-N)"' ----- )>

(4.2)

11



Now we perform a simple substitution / renaming of integration variables r1, 61 = r2, 02:

= <_‘//1(F11O-l)rl//z(Fzro-z)----'//N (FN 1Oy) h(r,

(4.3)

Moving the minus sign across from the left to the right, we recover the first term in the determinant
on the LHS:

N

Z<V’1(F1’O-1)’V/2(F2!0-2)----1//1\1 (FN o)

i=1

A AW (1,00 (P2, 0)pr (0] ) (49

We therefore conclude that the first and second terms make the same contribution to the sum in

the determinant on the LHS. Hence we can replace the LHS determinant with the first term
multiplied by N!:

=

i<‘PN AT N>=%;<V/1(Fl,O'l),l//z(FZ,UZ)....l//N(FN,O'N)

—
NI

ﬁ(Fi)A{y/l(Fl, 61),;//2(F2,0'2)....1//N (rv, oy )}>

(4.5)

The single-particle wavefunctions are orthonormal, and this means that only the identical

permutation from the sum implied by the determinant on the RHS makes a non-zero contribution to
the overall integral:

Mz

1]
LN

> (v

i=1 i

DX ((ACEAVAGE S A CIEN) G TAGRANA GRS RN G H])

Mz

=3 (yi (.0 [ (T 0)

(4.6)

I
UN

As far as the non-interacting part of the Hamiltonian is concerned, it does not therefore matter
whether we use a fully antisymmetrized wavefunction W, or a simple product of the single-particle

wavefunctions.

Now we evaluate the inner product involving the electron-electron interaction part of the

Hamiltonian (2.2), that is the two-electron operator that takes into account the Coulomb energy
between electrons:

12
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(4.7)

For given i,j, all terms which involve permutations of electrons other than the ith and jth electrons

are zero, since the single-particle wavefunctions are orthonormal:

Z (C.‘-P«{".’_ﬂ 1G4 )LIJJC-J"SJ) {qT&'Q[vn o |l(f} C— “164 )q{)(‘b:f>

T2 5
~( YA (2,0 >‘?)J('f~”6")lé.rr2 Fi-v [%(“ SYPle w0)

(4.8)

Putting together the two parts of the integral, Egs (4.6) and (4.8):

<\PN I:I\NlPN> N A 1 i#] e2 e2
Ey _W_§<Wi‘h(ﬁ)§”i>+§;(<‘//iwj' 471_6_0“] Vi | (Wi, 47[80“] 4
(4.9)
where

HARTREE/COULOMB INTEGRAL
(4.10)

%r, > Jpda(, o) o)y .0 |y (7 0)‘

ﬂg\r 2
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EXCHANGE INTEGRAL

wi>=g[:ﬁdS(F,a)dS(r“',a')w:(F,a)w,-*(F:a')

2

Are, |r —

(4.11)

<'//i‘//j

These two integral equations can be compared with (1.12) and (1.14) for the two-electron case.
Note that we have followed the usual convention of excluding the unphysical self-interaction terms
(i=j) from the sums in (4.9), but even including them would have not affected the final result since
the two terms in the Hartree and Exchange integrals would have then cancelled each other. The

— —y, (1o (r'c)s, ,
47T6‘orij r " i

delta Kronecker term o_ _  at the end of the exchange integral serves as a reminder that HF theory
i19]j

makes provision only for exchange interactions between parallel-spin electrons, and that if the
electron spins are antiparallel (o # ¢’) the exchange integral vanishes altogether. Furthermore, it can
be shown formally, by expressing the Coulomb potential in terms of its inverse FT, that the
integrand of Eq. (4.11) is always positive for the case o = ¢’. The proof is given below:

<Y %]qm I‘VJ(P>—-
%43 42r (|) (_«-) (PJ (&) ——or 411_&} ‘LPJJL) o ("'(
._e,{mga K4 %Aw&rqﬁ@,) 9 e %O”)q)b(r)
&(?_,ﬂa Sgl?’k’! Sd'érq) C‘”)%L-)ﬂ 5J3rv) (r‘ )q] (v-
_ Py 4| Prat (et >0
T il 3%3 SUARS Vi

QED

This allows us to confirm the result deduced qualitatively in section 1 that exchange interaction
always introduces a spin dependence on the system (even though our starting point, the N-electron
Hamiltonian, was itself spin-independent), and in particular that the repulsive exchange force

between parallel spin electrons always leads to a net lowering of the total system energy E, . The

spin dependence of the total energy and the fact that, for electrons, ferromagnetic alignment is the
most energetically favourable configuration (Hund’s rule) represent the origins of magnetism in
solids.

The next step in the derivation of the HF Ground state wavefunction ‘PNHF and ground state energy

Ey ¥ is to minimize (4.9) with respect to the set of single-particle wavefunctions {{;}. This can be

done by following the theory of constrained minimization and introducing a set of Lagrange

14



parameters g; to satisfy the ortonormality constraint <y;| {;>=8; The functional G({{);}) to be
minimized with respect to {{);} can therefore be written as:

eZ
Kor}jy/ilﬂj —\WiV;

(4.12)

=1 i,]

G({Wi}):i<'/i ‘ﬁil/ji>+%§(<l/jil//j

%Wi»—iei (wilvi)

0'ij i=1

Now we calculate the variation 6G upon varying the spatial part of the orbital from {;to g+6 ;:

.

4”50rij Vi
o2

—~  w.Sw

This expression contains two sets of terms, one containing 6{;*, the other containing 6. In the

N

SG({wi})= Z(<5wi [ )+ (v B (5w, )>)

i=1
e2
—— Y )~ oW
ﬂgol’”

1I¢j
tS {<5w.w,
i
e2
— Svw. )— W
Iner wivi ) - (v

+ %§(<Wi‘/’j g
_i(gi (Owilvi)+ & (v |5l//i>)

=1

(4.13)

following we will postulate that, in order to minimize the energy 6G=0 for arbitrary variations &1;,
the terms containing 6;* and those containing 6); must both independently be zero. Considering

e2
T Vi) v
ﬂgorij

(4.14)

terms containing &;* first:

G({wi})= i(@//i | ﬁwi>)+%:(<5wi%

i=1

%{)mwi»—g(% (Owilwi)) =0

Since the variations are arbitrary we must have that the term multiplying any chosen 8{;*must be
zero:

15
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i|l//i>+; Vi m‘//i'//j —Y; m
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ey, (ﬁ\zﬁ;_?‘wi (")

COULOMB POTENTIAL

RN e = -
> pdery ) (w1 ———=v, (13, ,, = v ()
i e, |r —r ‘

j=i

EXCHANGE POTENTIAL

Eqg (4.15) represents a generalization of the Hartree Equations known as the Hartree-Fock equations,
which determine the set of orthonormal {{);} that minimize the energy functional, thus reducing the
N-electron problem formally to a one-electron problem. The HF equations may at first appearance
look like a set of Schroedinger equations for each single-particle wavefunction {;, but one needs not
forget that the € term on their RHS represents the Lagrange multiplier and it is not possible to
interpret it as the corresponding single-electron energy.

To determine the HF ground state we therefore need to find self-consistently N solutions {{);} to the
HF equations, one for each electron, with lowest g; (i=1-N). Higher lying, unoccupied orbitals do not
enter the HF equations. Once all the HF single-electron wavefunctions have been found, the HF

ground state ‘¥ HF can be found by building the corresponding Slater determinant. The HF estimate

for the ground-state energy E, ¥ is then given by:

E,I\l-lF _ <\{J:F

FPi )2 Y e > B (4.16)

TRUE
EN

where represents the true ground state energy of the N-electron system. The HF estimate

ENHF obtained through the simplifying assumption that ‘PNHF has the shape of a Slater

determinant therefore always provides an upper bound to the true ground state energy. The
difference between HF and true ground state energies is called the correlation energy. Note that the
correlation energy is not a quantity with physical significance; it merely represents the error incurred
in making a fairly crude first-order approximation and therefore refers to the part of the electron
correlations which are not being captured by the HF approximation.

The physical meaning of the Lagrange eigenvalue g; on the RHS of (4.15) is provided by Koopman’s
theorem: The eigenvalue of a filled (empty) orbital {; is equal to the change in the total energy if an
electron is subtracted from (added to) the system, i.e. decreasing (increasing) the size of the
determinant by omitting (adding) a row and column involving a particular orbital ); keeping all the
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other orbitals the same. If the ith electron is taken out of the N-electron system we can therefore
write the subtracted energy as:

AEy = (7 [H [P ) (Wi TH P = ¢ (4.17)

The HF equations differ from the Hartree equations (3.6) by the additional exchange term on the left

side. The complexity introduced by the exchange term is considerable, as it is non-local, non-linear

and spin dependent. As a result, the HF equations are in general quite intractable, and can be solved

only in special cases such as the homogeneous electron gas described in the next section.

5. THE HARTREE-FOCK THEORY OF THE HOMOGENEOUS
ELECTRON GAS

The simplest model system representing condensed matter is the homogeneous electron gas, in
which the nuclei are replaced by a uniform positively charged background. Since all independent-
particle terms can be calculated analytically, this is an ideal model system for understanding the
effects of correlation. A homogeneous system is completely specified by its electron density,

n= Ne/V (where N, is the total number of electrons and V is the volume of the system). The

density can in turn be characterized by the parameter I, defined as the radius of a sphere

containing one electron on average:

13
4 1 3
—r’=V/N,==—>r,=|— (5.1)
3 n 4zn
Thus I, is a measure of the average distance between electrons in the gas.
The hamiltonian for the homogeneous system is derived by replacing the nuclei in (2.2) with a
uniform positively charged background, which leads to:
L 2
—~ h2 14r| S ¢ -~ (ne
T e A0 ) o
2me i 250 i ‘I’i—l’j‘ ‘r—r"
L Vel Vion _

The last term V,, is the average potential energy due to the positive background.

The solution of the Hartree-Fock equations for this case can be found analytically. It turns out that
the single-electron eigenstates which solve the HF equations are plane waves of the form:

ik;-r

78 (r) :[%}X(O— =T oro=\) (5.3)
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just as for non-interacting electrons (Sommerfeld free electron model). If plane waves are indeed

solutions, then the electronic charge density that determines Vel will be uniform. However, in the

homogeneous electron gas the ions are represented by a uniform distribution of positive charge
with the same density as the electronic charge. Hence the potential of the ions is precisely canceled

by the Hartree energy term: V,, +V,, = 0. Only the exchange term survives, which is easily

evaluated by writing the electron-electron Coulomb interaction in terms of its (inverse) Fourier
transform:

k 1
d e|k(r r)

(5.4)

If (5.4) is substituted into the exchange term of the HF equations (4.15) ) and the ; are all taken to
be plane waves of the form (5.3), then the exchange term in the HF equations becomes:

- — i D= Tl e2
k 3 vaiker' o—ikt
Voer Dy (N == 'qu e e T
k<kF Are, |r—r ‘
EF

Cﬁd @i (RO (F-T) e? (5.5)

\/\7k<kF Are, r—r"

okt 02

S\Nk; K-k

where the sum occurs over all wavevectors inside the Fermi Sphere of radius kr (the Fermi
wavevector) and a factor of 2 was included to account for spin degenceracy. The sum at then end of
(5.5) can be calculated explicitly as follows:

1 1 1
S(k)== d3k'—— -
R . K&l o

Take the fixed vector K to lie along the z-direction and work in spherical polars:

1
S(k) = k' dk'sin@déd 5.7
(k) (2;; k;[kF ¢ k'?— 2Kk 'cos 6 + k* 57)
Performing integration in ¢ yields factor 2m; performing integration in 8 by substituting x=cos6:
ke
S(k)=i21jk'| KKl
477 K 3 k—-k'

Tk
= e Lo o) [KK (5.8)

" 4r? k 2 k-k' 0

1 1 1—X2

L r[ K where Fo=t In[2X
(272) " |k 2" ax

1-x
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The LHS of the HF equation therefore assumes the form:

n2k2 2’ k
am, 59)

e F

e(ki)y, where g(k)=

This shows that plane waves do indeed solve the HF equations, and that the energy of the one-
electron level with wave vector k is given by (5.9). The exchange energy therefore provides a
negative contribution to the total energy of the electron gas, which contributes to the binding
energy of metals. The function F(x) is plotted in Figure 5.1a, and the energy (k) in Figure 5.1b:

Fig 5.1

(a) A plot of the function
F(x), defined by Eq. (17.20).
Although the slope of this
function diverges at x = 1,
the divergence is logarithmic,
and cannot be revealed by
changing the scale of the plot.
At large values of x the be-
havior is F(x)—1/3x2.(b) The
Hartree-Fock energy (17.19)
may be written

&y I T
8_'} = [x 0.663 (GO)F(x)],

where x = k/kg. This function
is plotted here for r/ap = 4, (1)
and may be compared with

the free electron energy

(white line). Note that in

addition to depressing the

free electron energy substan- 2

tially, the exchange term has E/8F

led to a considerable increase
in the bandwidth (in these
units from 1 to 2.33), an 2]
effect not corroborated by
experiments such as soft X-

ray emission or photoelec-

tron emission from metals, 1
which purport to measure

such bandwidths.

width

T (b
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Although the Hartree-Fock one-electron levels continue to be plane waves, the energy of an electron

ik-r

in the level €7 is now given by hk?[2m plus a term describing the effects of the electron-electron

exchange interaction. To compute the contribution of these interactions to the total energy of the N-
electron system, we must sum this correction over all k¥ < ke, multiply by 2 (for the two spin levels

that are occupied for each k), and divide by 2 (because, in summing the interaction energy of a given
electron over all electrons, we are counting each electron pair twice). In this way we find that:

2
E_ 22 h2k2 eszz{Hk -k |k +k|} (5.10)

Ky 2 T K<k ‘k —k‘

if the two terms are converted into integrals using I|m Z F(k) = I— F (k) and

NNV =k /377 we obtain:

E_Fg 3 ek, } e2 [3(k . )2_i(k a)}_ 221 0916
N |57 4 « 2a, |5 " ) 2z ] (r./a, ) (r,/a,)
—

KINETIC ENERGY EXCHANGE ENERGY

(5.11)

where the last expression is written in terms of the rydberg (e2/2a0 =1Ry :13.6eV) and the

dimensionless parameter "%, where a, is the Bohr radius. Since ’s/% in metals is in the range from
2 to 6, the exchange term in (5.11) is quite comparable to the kinetic energy term in size, which
indicates that electron-electron interactions cannot be overlooked when calculating electronic
energy of a metal. Also by looking at equation (5.11) we can deduce that at high-densities (small rs)
the Kinetic Energy dominates, and in spite of the electron-electron interaction the system behaves
like an almost ideal Fermi Gas, whereas at low densities (high rs) exchange energy dominates. As the
effect of Exchange interactions increases, the exchange energy leads to a full, ferromagnetic
alignment of the electron spins. It is believed that this occurs in a range of 75 < rs < 100. At very low
electron density (rs > 100), the electrons become localized in order to minimize their Coulomb
repulsion due to the strong repulsive exchange forces. As a result the system undergoes a metal-
insulator transition (Mott insulator). Wigner predicted that in this regime the free electron gas
would crystallize on a regular BCC lattice (Wigner Crystallization).

With much labour the exact leading terms in a high-density (i.e. small 7s/%) expansion of the ground-
state energy of the electron gas have been calculated:

E_|_221 0916 +0.06221In(r, /a,)—0.096 +0(r, /a,) |Ry (5.12)

N[ (r/a,)" (r/a)

Note that the first two terms are just the Hartree-Fock result (5.11). The next two terms in (5.12) and

all other corrections to the Hartree-Fock result represent the correlation energy.
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Equation (5.9) has one rather alarming feature: The derivative 88/8k becomes logarithmically
infinite at K =K. Since (]/h)ag/é‘k li, is precisely the velocity of those electrons most

important for metallic properties, this is an unsettling result. The singularity does not occur for a
general non-coulombic potential, but can be traced back to the divergence of the Fourier transform

472'62/k2 of the interaction ez/r at k=0. This in turn reflects the very long range of the inverse

square force. If the Coulomb interaction were replaced, for example, by one of the form ez(efk"r/r)

then its Fourier transform would be 47re2/(k2 + koz) , the k = 0 divergence would be eliminated, and

the unphysical singularity of the Hartree-Fock energies removed. It can be argued that the potential
appearing in the exchange term should be modified in just this way to take into account the fields of
electrons other than the two at r and r', which rearrange themselves so as partially to cancel the
fields the two electrons exert on one another. This effect, known as “screening," is of fundamental
importance not only for its effects on the electron-electron interaction energy, but, more generally,
in determining the behavior of any charge-carrying disturbance in a metal®.

6. CORRELATION AND THE EXCHANGE-CORRELATION HOLE

As explained in preceding sections, the Hartree-Fock approximation (HFA) consists of neglecting all
correlations except those required by the Pauli exclusion principle (i.e., exchange-interaction). We
also explained that, within the framework of HF theory, only correlations between parallel spin
electrons can be accounted for and that therefore the exchange term always has the effect of
lowering the total energy. The effect of exchange may therefore be interpreted as the interaction of
each electron with a positively-charged "exchange hole" surrounding it. The general features of
correlation can be better understood by looking at the pair distribution function of the N-electron
system (since the interactions always involve pairs of electrons).

In general, the joint probability n(F, O';F', o), known as the pair correlation function, of finding
electrons of spin o at point r and of spin ¢’ at point r’ is given by :
n(r,o;r', o) = <Z 5(r-1)s(c~0)8(r'~1)5(o "~ cf,-)>
] (6.1)
=N(N-1) > Id A T TN (e e A e R e

0—3,0-4

assuming ¥, is normalized to unity. For uncorrelated particles, the joint probability is

just the product of probabilities, so that the measure of correlation is:

An(r,o;r',o)=n(r,o;r',o)=n(r,o)n(r',c) > n(r,o;r',o) =n(r,o)n(r',c’) + An(r,o;r', o)

(6.2)

> The discussion of screening is beyond the scope of these notes. The reader should consult any standard text
on solid state physics
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It is also useful to define the normalized pair distribution function:

g(F,O';F',o"): nEF’O-;F;’GI) =1+ AQ(F'G;F;’GI)
n(r,o)n(r',o") n(r,o)n(r',o")

(6.3)

which is unity for uncorrelated particles. The degree of correlation is therefore reflected in the

quantity: g (F, o, F’, o) —1. Note that all long-range correlation is included in the average terms so
that the remaining terms An(F, O';F', o) and g(F, o F', o ") —1 are short range and vanish at large

‘r—r".

The exchange hole AnX(F, G;F',G') is given by An(F,a;F', o) inthe HFA, where ¥, in (6.1) is
approximated by the Slater determinant wavefunction. There are stringent conditions on the
exchange hole: (I) it can never be positive, An, (F,O‘;F',O") <0 (which means that

gX(F, G;F', 0') <£1), and (2) the integral of the exchange hole density An, (F,O‘;F',O") overallr'is

exactly one missing electron per electron at any point r. This is a consequence of the fact that if one
electron is at r, then that same electron cannot also be at r’.

The effects of correlation can be cast in terms of the remaining part of the pair correlation
function beyond exchange, An. (F, O';F', o):
An(?, or', o')=An, (F, or, o')=An, (F, oir', o')+An, (F, or’, o) (6.4)

Since the entire exchange-correlation hole obeys the sum rule that it integrates to 1, the
correlation hole An, (r,o;r',c’) mustintegrate to zero, i.e. it merely redistributes the density of

the hole.

In the case of the homogeneous electron gas, the form of the exchange hole can be calculated
analytically within HF theory. To do this we have to take a closer look at the exchange term (5.5):

R eiR} o ez

3y 1 i (K=K)-(r=T"

Upen (1) 9 (1) = === >, p°re 00— — (6.5)
K'<ke 4re,|r—r ‘
From this we can define an exchange charge density:

- — e R (F T

pr(r_r.):__Zeu(k K)-(r-r") (6.6)
\Y k'.<k':

The exchange charge density is seen by a particular electron at location r as a result of its exchange
interaction with the other electrons at location r’ in addition to the normal Coulomb charge density
produced by the other electrons. The Coulomb charge density is uniform in the homogeneous
electron gas, but the exchange charge density seen by a particular electron varies as a function of
distance from the electron:
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(6.7)

This still depends on the k-value of the particular electron under consideration. We can calculate an
average exchange charge density (the exchange hole) by averaging over all electrons within the
Fermi Sphere (same integration as above):

— 3eN sink. “r—kg"“rcosk."r 1
R Pl r i ryamc A
2 V (kF r) (Aﬂ-kF)kkkF
_ 9eN (sinker —kercosk.r)?

2V (k. r)°

2 sin @dkd od ge'™ "’

(6.8)

By adding to this the standard to this the standard Coulomb charge density eN/V we can calculate
the total average charge density seen by a HF electron:

i 2
pmt(r)=eﬁ 1_g(kFrcoskFr 6sln Ker)
Vi 2 (ker)

(6.9)

Hence, as expected, exchange interactions have the effect of reducing the concentration of electrons
with equal spin in the vicinity of each electron in the system. If the HF homogeneous electron gas is

unpolarized (N, =N = N/2), a plot of the electron charge concentration as a function of distance

away from each electron is therefore expected to drop to % at the origin, where all the same-spin
electrons are being repelled away.

For partially polarized cases, the exchange energy is just a sum of terms for the two spins,

which can also be expressed in an alternative form in terms of the total density h = n' +n* and the
fractional polarization:

HT - ﬂi

{=—
(6.10)

It is straightforward to show that exchange in a polarized system has the form
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ex(n, §) = ex(n, 0) + lex(n, 1) — €x(n, 0)1 /4(2),
where
L e ol iR =00

Jr-':'IZ';.) = E 2”3 . J ?

(6.11)

Unlike the exchange energy, it is not possible to determine the correlation hole and energy
analytically for a homogeneous electron gas. The discussion on methods to estimate the correlation
energy is therefore delayed until section 11 on the Local Density Approximation within the
theoretical framework of Density Functional Theory.

PART Il: DENSITY FUNCTIONAL THEORY

7. INTRODUCTION

The HF equations were historically important as a milestone in treating the many-body problem in
metals, as it was the first technique which allowed for a neat separation between exchange and
correlation effects. In practice however treatise of HF equations is difficult, and requires careful
further approximations. Furthermore, it has the other major disadvantage of not accounting for
exchange effects between electrons with antiparallel spin. Hence the need for Density Functional
Theory (DFT), a more powerful technique for calculating the ground state properties of many-body
systems.

Density functional theory is a theory of correlated many-body systems that, similarly to HF theory,
incorporates effects of interactions and correlations among the particles. As such, density functional
theory has become the primary and most promising tool for calculation of electronic structure in
condensed matter, and is increasingly important for quantitative studies of molecules and other
finite systems. In particular, DFT owes much of its success to the development of approximate
functionals such as the local density (LDA) and generalized-gradient approximation (GGA), both of
which will be explained in detail in later sections of this document.

The modem formulation of density functional theory originated in a famous paper written

by P. Hohenberg and W. Kohn in 19643, These authors showed that a special role can

be assigned to the density n(r) of particles in the ground state of a quantum many-body system: the
density can be considered as a "basic variable," and all properties of the system, and in particular
the ground state energy, can be considered to be unique functionals® of the ground state density.
The ground state electron density can therefore be used as a replacement for the ground state

many-body wavefunction W which, as a result, can be disposed of altogether in the context of

DFT:

*p. Hohenberg and W. Kohn, "Inhomogeneous electron gas," Phys. Rev. 136:B864-871, 1964.
* An introduction to the mathematical theory of functionals and functional derivatives is presented in Appendix A of this
document.
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i5(? - E)‘PG> (7.1)

where r; is the position of the i electron in the material. The attraction of density functional theory
is evident by the fact that one equation for the density is remarkably simpler than the full many-
body Schroeinger equation that involves 3N degrees of freedom for N electrons. Also in 1965
appeared the other classic work of this field by W. Kohn and L. J. Sham® , whose formulation of
density functional theory has become the basis of much of present-day methods for treating
electrons in atoms, molecules, and condensed matter.

8. THOMAS-FERMI-DIRAC APPROXIMATION: EXAMPLE OF A
FUNCTIONAL

The original density functional theory of quantum systems is the method of Thomas and Fermi
proposed in 1927. Although their approximation is not accurate enough for present-day electronic
structure calculations, the approach illustrates the way density functional theory works. In the
original Thomas-Fermi method the material is idealized as a homogeneous gas of non-interacting
electrons and the kinetic energy of the system electrons is approximated as an explicit functional of
the density. Both Thomas and Fermi neglected exchange and correlation among the electrons;
however, this was extended by Dirac in 1930, who formulated the local approximation for exchange

still in use today. This leads to the energy functional for electrons in an external potential V,,, (I):

Eteln] = C, fdgi" fi[l‘}r‘j’ljl + \/‘dmf‘ Veu(r)n(r)

F szdir‘ n(r)”? + %]d“rdgr’ n(rjn ()

r—r|’
(8.1)

3 2/3
where the first term is the local approximation to the kinetic energy with: Cl = E(?ﬂzz )( ) , the

3
third term is the local exchange with C, = —Z[—) and the last term is the classical electrostatic
4

Hartree energy.

The ground state density and energy can be found by minimizing the functional E[n] in (8.1) for all
possible n(r) subject to the constraint on the total number of electrons:

*> W. Kohn and L. J. Sham, "Self-consistent equations including exchange and correlation effects,"
Phys. Rev. 140:A1133-1138, 1965.
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fdlr niry=N.

Using the method of Lagrange multipliers, the solution can be found by an unconstrained

(8.2)

minimization of the functional:

Qqeln] = Eqgln] — p Ifdjrn{rj — Nl

(8.3)

where the Lagrange multiplier p is the Fermi energy. For small variations of the density 5n(?) the

condition for a stationary point is:

fd-‘r|szTF|n{r)+ sn()] — Qreln(0)]} —

3, |3 3 5, 32
d'r EC.n‘r{r)“ "+ V() -} dnir) =0,
; : (8.4)
where V (F) =V, (F) +V (F) +V, (F) is the total potential. Since (8.4) must be satisfied for any

Hartree

function §n(F) , it follows that the functional is stationary if and only if the density and potential

satisfy the relation:

| o
{3Ir2]'f"hn[r}z’ﬂ FV(r)—pu=0.
2 (8.5)

The Thomas-Fermi approach has been applied, for example, to equations of state of the elements.
However, the Thomas-Fermi type approach starts with approximations that are too crude, missing
essential physics and chemistry, such as shell structures of atoms and binding of molecules. Thus it
falls short of the goal of a useful description of electrons in matter. In order to make any progress
and investigate more advanced techniques, we first need to gain a better understanding of the
relation between the ground state density and the external potential V,, (F) . This is the subject of

the next section.
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9. THE HOHENBERG-KOHN THEOREMS

The two Hohenbeg-Kohn (HK) theorems represent the fundamental theoretical framework over
which all modern formulations of DFT are based. The formulation applies to any system of mutually

interacting particles in an external (ionic) potential Vext(r) , including any problem of N electrons

and M fixed nuclei in a crystalline solid, where the hamiltonian can be written as a sum of the
internal Hamiltonian of the electron cloud and the sum of the external potentials due to the nuclei
acting on each electron :

- N hZ ) 1 i#j ez N _

HN :Hint +Vext(r)zz_ vi T - — +Zvext(ri)

o 2m, 257 Arne, K—r| =

h v g Vext

Hint
— S Ze?
where v, () ==Y ——
(9.1)

The relations established by Hohenberg and Kohn are illustrated in Fig. 9.1 and can be started as
follows:

e Theorem I: For any system of interacting particles in an external potential V., (F) the
potential V,,, (F) is determined uniquely, except for a constant, by the ground state particle
density N, (r)

Corollary I: Since the hamiltonian is thus fully determined, except for a constant shift of the
energy, it follows that the many-body wavefunctions for all states (ground and excited) are
determined. Therefore all properties of the system are completely determined given only

the ground state density N, (r)

e Theorem IlI: A universal functional for the energy E[n] in terms of the density n(r) can be
defined, valid for any external potential V,,(r) . For any particular V. (r) the exact ground
state energy of the system is the global minimum value of this functional, and the density
n(r) that minimizes the functional is the exact ground state density N, (F)

Corollary II: The functional E[n] alone is sufficient to determine the exact ground state
energy and density. In general, excited states of the electrons must be determined by other
means
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Fig 9.1: Schematic representation of the HK theorem. The

_] smaller arrows denote the usual solution of the Schroedinger
/ HK equation where the potential r
VeulI) < ng(r) q P Vea (1) determines all states of
L ft the system ¥ ({F}), including the ground state \Po({F}) and

ground state density ©°‘\' /. The long arrow labeled “HK"

denotes the HK theorem, which completes the circle.

Proof of Theorem |: density as a basic variable

Consider first Theorem |, using the general expressions given in (7.1) and (3.7) for the density and
energy in terms of the many-body wavefunction. Suppose that there were two different external

potentials V. ext (r) and V (r) which differ by more than a constant and which lead to the same

~ (1

)
ground state density Ny (r) The two external potentials lead to two different Hamiltonians H " and

~(2

(the internal Hamiltonian is assumed to stay the same) which have different ground state
many-body wavefunctions, ‘{’(1) and ‘P(Z) . These two wavefunctions are in turn hypothesized to

- ~(1)
have the same ground state density N, (r) Since ¥ is not the ground state of H it follows that

EWMD — {"-l-"“”f'}{”lqﬂ”} < {w{Z}lﬁilJNﬂZJ}_
(9.2)

The strict inequality follows if the ground state is non-degenerate, which we will assume
here. The last term in (9.2) can be written

{¢12}|H£|]|qj(2)} {wiszHﬁ}l‘yﬂl} w{:’-‘}lﬁﬂ} _ !}(2”11;{2!}
S O f [vg,ﬁ,’(r} - vj,ﬁ‘{r)] no(r),

(9.3)

so that
EW < F@ 4 f &r [ V)~ VD) | notr,
(9.4)

On the other hand if we consider E'? in exactly the same way, we find the same equation
with superscripts (1) and (2) interchanged:

E@ o M 4 j [V.fﬁ}(r) = ‘”{r)] ng(r).

(9.5)
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Now if we add together (9.5) and (9.4), we arrive at the contradictory inequality

EY+E® <EY + E® | This establishes the desired result: there cannot be two different external
potentials differing by more than a constant which give rise to the same non-degenerate ground
state charge density. The density therefore uniquely determines the extemal potential to within a
constant. The corollary follows since the hamiltonian is uniquely determined (except for a constant)
by the external potential and hence by the ground state density. Then, in principle, the wavefunction
of any state is determined by solving the Schrodinger equation with this hamiltonian. Among all the
solutions which are consistent with the given density, the unique ground state wavefunction is the
one that has the lowest energy.

Despite the appeal of this result, it is clear from the reasoning that no prescription has

been given to solve the problem. Since all that was proved is that N, (F) uniquely determines

Ve (F) we are still left with the problem of solving the many-body problem in the presence of

V., (r) For example, for electrons in materials, the external potential is the Coulomb potential due

to the nuclei in the periodic crystal structure of the material. The theorem only requires that the
electron density uniquely determines the positions and types of nuclei, which can also easily be
proven from elementary quantum mechanics. At this level we have gained nothing: we are still
faced with the original problem of many interacting electrons moving in the potential due

to the nuclei.

Proof of Theorem llI: universal functional for the energy E[n] in terms of the density n(r)

The second theorem is just as easily proven once one has carefully defined the meaning

of a functional of the density. Since all properties such as the kinetic energy, etc...., are uniquely
determined if n(r) is specified, then each such property can be viewed as a functional of n(r),
including the total HK energy functional:

Eyk[n] = Tn] + Eixln] + [d'l‘r' Vex(rn(ry + E;;

= Fuk[n] + f d*r Veu(On(r) + Eyy,
(9.6)

where E, is the interaction energy of the nuclei among themselves. The functional F,, [n]

defined in (9.6)includes all internal energies, kinetic and potential, of the interacting electron
system:

Fuk[n] =T[n] + Einln], 57)
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which must be universal (the same for all electron systems, independent of the external potential
Ve (r) ) since the kinetic energy and interaction energy of the particles are functionals only of the

density.

Now consider a system with the ground state density n® (F) corresponding to external potential

A (F) . Following the discussion above, the Hohenberg-Kohn functional is equal to the expectation

ext
value of the hamiltonian in the unique ground state, which has wavefunction ‘I’(l) :

0 — EHK[”“}] — (llf{”lﬁ“}lilf“‘}. 0.5

Now consider a different density, say n® (F) , Which necessarily corresponds to a different

(2) (2) ©)

wavefunction W' . It follows immediately that the energy E'” of this state is greater than E'7,

since

EU} i {wii}lg“}lwﬂl} < {qj'ﬁ}”}“”wﬂ}} - E(I}_
(9.9)

Thus the energy given by (9.6) in terms of the Hohenberg-Kohn functional evaluated for
the correct ground state density Ny (F) is indeed lower than the value of this expression for

any other density n(r). It follows that if the functional F,[n] was known, then by minimizing the

total energy of the system, (9.6), with respect to variations in the density function n(r), one would
find the exact ground state density and energy. This establishes Corollary Il. Note that the functional
only determines the ground state properties; it does not provide any guidance concerning excited
states.

The challenge posed by the Hohenberg-Kohn theorems is how to make use of the reformulation of
many-body theory in terms of functionals of the density. The form of the functionals in the theorems
is still unknown, and it is easy to show that these must be non-local functionals, depending
simultaneously upon n(r) at different positions r, which are difficult to cast in any simple form. It is
important to emphasize that density functional theory does not provide a way to understand the
properties of a material merely by looking at the form of the density. Although the density is in
principle sufficient, the relation is very subtle and no one has found a way to extract directly from
the density any general set of properties. e.g. whether the material is a metal or an insulator.

This leads us to the Kohn-Sham approach, the success of which is based upon the fact that it includes
the kinetic energy of non-interacting electrons in terms of independent particle wavefunctions, in
addition to interaction terms explicitly modelled as functionals of the density. There is in fact no
known way to go directly from the density to the kinetic energy. Because the kinetic energy is
treated in terms of orbitals - not as an explicit functional of the density - it builds in all the quantum
properties that have no simple relation to the density
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10. THE KOHM SHAM EQUATIONS

The Kohn-Sham approach is to replace the difficult interacting many-body system obeying the
Hamiltonian (9.1) with a different auxiliary system that can be solved more easily. The ansatz of
Kohn and Sham assumes that the ground state density of the original interacting system is equal to
that of some chosen non-interacting system. This leads to independent-particle equations for the
non-interacting system, the Kohn-Sham equations, that can be considered exactly soluble (in
practice by numerical means) with all the difficult many-body terms incorporated into an exchange-
correlation functional of the density. By solving the equations one can compute the ground state
density and ground state energy of the original interacting system with the accuracy limited only by
the approximations in the exchange-correlation functional.

Indeed, the Kohn-Sham approach has led to very useful approximations that are now the basis of
most calculations that attempt to make "first-principles"” or "ab initio" predictions for the properties
of condensed matter and large molecular systems. The local density approximation (LDA) or various
generalized-gradient approximations (GGAs) described below, are remarkably accurate, most
notably for "wide-band" systems, such as the group IV and II-V semiconductors, sp-bonded metals
like Na and Al, insulators like diamond, NaCl, and molecules with covalent and/or ionic bonding.
However, these approximations fail for many strongly correlated cases including the copper oxide
planar materials which are antiferromagnetic insulators for exactly half filled bands, whereas the
LDA or present GGA functionals find them to be metals. This leads to the present situation in which
there is great interest in utilizing and improving the density functional approach, to build upon the
many successes of current approximations and to overcome the known deficiencies and failures in
strongly correlated electron systems.

Here we will consider the Kohn-Sham ansatz for the ground state, which is by far the most
widespread way in which the theory has been applied. However, in the big picture this is only the
first step. The fundamental theorems of density functional theory show that in principle the ground
state density determines everything. A great challenge in present theoretical work is to develop
methods for calculating excited state properties, but this lies beyond the scope of this short
introduction.

The Kohn-Sham ansatz rests upon two assumptions:
1. The exact ground state density can be represented by the ground state density of an
auxiliary system of non-interacting particles (i.e. a system where the independent-electron

approximation applies). This leads to the relation of the actual and auxiliary systems shown
in Fig. 10.1:
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Fig 10.1: Schematic representation of the Kohm-Sham ansatz. The label HK, denotes the HK theorem applied
to the non-interacting auxiliary system of electrons. The arrow labelled KS provides the connection in both
directions between the many-body interacting and independent-particle systems. Therefore, in principle,
solution of the independent-particle Kohm-Sham problem determines all properties of the original full
interacting many-body system.

This assumption has never been proven in general. It is obviously true for the homogeneous gas, it
can be demonstrated easily for any one- or two-electron problem, and it has been shown by Kohn
and Sham for small deviations from the homogeneous gas. However, no general proofs have been
developed yet. Nevertheless, results of calculations appear very "reasonable" and detailed tests
have shown that it is possible to fit the best numerical densities in many cases. We will follow the
standard practice and proceed under the assumption that the Kohn-Sham ansatz is either valid or is
good enough to be useful in practical calculations.

2. The auxiliary hamiltonian is chosen to have the usual kinetic operator and an effective local
potential Vg (F) acting on an electron of spin o at point r. The local form is not essential,
but it is an extremely useful simplification that is often taken as the defining characteristic of
the Kohn-Sham approach. We still assume that the external potential \7; is spin
independent; nevertheless, except in cases that are spin symmetric, the auxiliary effective

potential Veg (F) must depend upon spin in order give the correct density for each spin.

The actual calculations are performed on the auxiliary independent-particle system
defined by the auxiliary Hamiltonian:

h? -
o Z—RVZ +VU(I’) (101)

e

aux

At this point the form of V ”(F) is not specified and the expressions must apply for all V ° (F) in

some range, in order to define functionals for a range of densities. For a system of N = N TENY
independent electrons each obeying this hamiltonian, the ground state has one electron in each of

the N orbitals ;" (F) with the lowest eigenvalues & of the Hamiltonian (10.1). The density or

the auxiliary system is given by sums of squares of the orbitals for each spin:

n(r)=Y'n(r,o) = ZZ‘(//{’(F)‘Z (10.2)

o i=l

Furthermore, the total independent-particle kinetic energy Ts is given by:
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and finally we define the classical Coulomb interaction energy of the electron density n(r) interacting
with itself (the Hartree energy):

E [n]=%'|‘d~°>rd3r'M (10.4)

=

Hartree

At this stage, the Kohn-Sham approach to the full interacting many-body problem consists in
rewriting the Hohenberg-Kohn expression for the ground state energy functional (9.6) in the form:

E. =T[n]+ j AV, (NN(F) + Eprree [N+ E, + E,[N] (10.5)

ext Hartree

Here V

. (1) is the external potential due to the nuclei and any other external fields (assumed to be

independent of spin) and E,; is the interaction between the nuclei. Thus the sum of the terms

involving V_ ., E

o> Enarreer @Nd E;, forms a neutral grouping that is well defined. As explained at the

end of the previous section, a distinct feature of thee KS approach is the independent-particle kinetic
energy Ts, which is given explicitly as a functional of the orbitals as opposed to the density;

however, Ts for each spin o must still be a unique functional of the density n(F, o) by application of

the Hohenberg-Kohn arguments applied to the independent-particle hamiltonian (10.1).

All many-body effects of exchange and correlation are grouped together into the exchange

correlation energy functional E,.[n]. Comparing the Hohenberg-Kohn, (9.6), and Kohn Sham, (10.5)

, expressions for the total energy shows that E . can be written in terms of the Hohenberg-Kohn

functional (9.7) as:

E,.[N] = Fuc [N]—(Ts[n]+ By e [N]) —

E..[n]= <f> ~T,[n]+ <\7 im> —E,..[N] (10.6)

Here [n] denotes a functional of the density n(F,a) which depends upon both position in space r
and spin 0. One can see that E,.[n] must be a functional since the right-hand sides of the
equations are all functionals. The latter equation shows explicitly that E,_ is just the difference of

the kinetic and the internal interaction energies of the true interacting many body system from
those of the fictitious independent-particle system with electron-electron interactions replaced by

the Hartree energy. If the universal functional E,_[n] defined in (10.6) were known, then the exact
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ground state energy and density of the many-body electron problem could be found by solving the

Kohn-Sham equations for independent-particles. To the extent that an approximate form for E, [n]

describes the true exchange-correlation energy, the Kohn-Sham method provides a feasible
approach for estimating these quantities.

Solution of the Kohn-Sham auxiliary system for the ground state can be viewed as the problem of
minimization of the Kohm-Sham energy functional (10.5) with respect to either the density n(F, o)
or the effective potential V¢ (F) . Since Ts (10.3) is explicitly expressed as a functional of the orbitals

but all other terms are considered to be functionals of the density, one can vary the wavefunctions
and use the chain rule to derive the variational equation:

dExs - LY +[ S E ey 8 Eptariree OFE,. :|5H(l", a)
SYrr(r)  Syrr)  dn(r.o)  Sn(r,o)  dn(r,o) ] SYSr(r) (10
subject to the orthonormalization constraints
'{lﬁ'fl'rfj'? = 3{.1‘5n.n
(10.8)
Using expressions (10.2) and (10.3) for n"(F) and T, which give:
8T 6n?(r)
R T ViAo (r); ———= = ¥7(r),
o%* o%x I
YT ¢ ) w09

and the Lagrange multiplier method for handling the constraints (10.8), this leads to the Kohn-Sham
Schrodinger-like equations:

(Hys — E” Wi (

(10.10)
where the g are the eigenvalues, and H,g is the effective Hamiltonian:

2

o (v h oo
HZ(r)=- o V2 +V2 (1) (10.11)
with
VKS (r) Vext (r) EHartree _I_ 5EXC
sn(r,o)  on(r,o) (10.12)

= VEX'[ (F) +VHartree (r) +VXZ (r)
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Equations (10.10) - (10.12) are the well-known Kohn-Sham equations, with the resulting
density n(F, o) and total ground-state energy E,. given by (10.2) and (10.5) respectively. The

equations have the form of independent-particle equations with a local effective potential that must
be found self-consistently with the resulting density. Furthermore, it follows from the Hohenberg-
Kohn theorems that the ground state density uniquely determines the potential at the minimum

(except for a trivial constant), so that there is a unique Kohn-Sham potential V.7 (r) | . =V.% ()

associated with any given interacting electron system.

The defining quality of the Kohn-Sham approach is that by explicitly separating out the independent
particle kinetic energy and the long-range Hartree terms, the remaining exchange correlation

functional EXC[n] can reasonably be approximated as a local or nearly local functional of the

density. This means that the energy EXC[n] can be expressed in the form:

Ey:[n] = f dr n(r)ec((nl], r),

(10.13)

—

where &, ([n], r) is an energy per electron at point r that depends only upon the density n(F, o)

in some neighbourhood of point r. Although the energy density &, ([n] , r) is not uniquely defined
by the integral (10.13), a physically motivated definition of &, ([n],?) follows from the analysis of

the exchange correlation hole. An informative relation of &, ([n],F) to the exchange-correlation

hole can be found using the so-called "coupling constant integration formula". In this case the
electronic charge is varied from zero (the non - interacting case) to the actual value, with the added
constraint that the density must be kept constant during this variation. Then all other terms remain
constant and the change in energy is given by

A (T, T )

dv,,
E,cln] :[ dM {0 | — ) ) — Engnreclit] = f*'311-""’1(1')[*1'1 d
0 da - r'|

(10.14)

where n, (r r ) is the coupling-constant-averaged hole:

1
Fye(r, ri) = f dlﬂiu{l‘, IJ)
0

(10.15)
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Heren,, (F,F’) is the hole summed over parallel (O' = o") and antiparallel (0 # o") spins.

Furthermore, the integral in (10.14) involves only the spherical average of the hole density.

Together with (10.13), Eq. (10.14) shows that the exchange-correlation density &, ([n] , r) can be

written as

| Aye(r, T
eel[n], 1) = = | & —1_=,
sc(ln], r) Ef T— e

This is an important result which shows that the exact exchange-correlation energy can be
understood in terms of the potential energy due to the exchange-correlation hole averaged
over the interaction from €2=0 to e2=1. For €2=0 the wavefunction is just the

independent-particle Kohn-Sham wavefunction so that nfc (F,G,F',G') =n, (F,G,F',O") . Thus
Exc[n] can be considered as an interpolation between the exchange-only and the full correlated
energies at the given density n(F, o) . Analysis of the nature of the averaged hole n_XC(F, F') isone

of the primary approaches for developing improved approximations for Exc[n] .

The exchange-correlation potential V,; (F) is the functional derivative of E ., which can then be

xc’

written as

béxc(ln], r)

',.f'uj_r) — Exc””]: If'} + n(r} ﬁﬂ(l_", ﬂ']

Y

(10.17)

The Kohn-Sham potential V, is defined by the requirement that it yield the exact density. This is an
exacting requirement that must be accomplished by the properties of V,. , since all the other
terms in Vg (r) =V, (r)+V

nartree (F) Voo () are known or are simple explicit functionals of the

density. Thus one way to determine V.7 (r) is the requirement that Vs () lead to the exact
density. Conversely, the application of the Hohenberg-Kohn theorem to the Kohn-Sham non-
interacting system implies that the exact density can be fit by only one V] (F) which is unique

except for an additive constant.

As for the case of HF theory, the Lagrange eigenvalues &/ in (10.10) have no obvious physical

meaning. There is only one exception: the highest eigenvalue in a finite system, which is minus the
ionization energy —I . This follows from the fact that the asymptotic long-range density of a bound
system is governed by the occupied state with highest eigenvalue, and since the density is assumed
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to be exact, so must the eigenvalue be exact. However, no other eigenvalue is guaranteed to be
correct by the Kohn-Sham construction. Nevertheless, the eigenvalues have a well-defined
mathematical meaning within the theory and they can be used to construct physically meaningful
quantities. In particular, it can be shown that the eigenvalue corresponds to the derivative of the
total energy with respect to occupation of a state. This is often known as the Slater-Janak theorem:

_ QB f 1y 9 Ftotat d1(r)

g = ar ;
dn; dr(r) dn; (10.18)

The Kohn-Sham approach places even heavier emphasis on the ground state than the Hohenberg-
Kohn theorems. Thus questions arise as to what properties of a material should be given correctly by
Kohn-Sham theory, if the exchange correlation functional was known exactly.

e Is the spin density correct in Kohn-Sham theory?
Yes. A spin-dependent effective potential is introduced specifically to give the correct
density and spin density.

e Are static charge and spin susceptibilities given correctly by the ground state functional?
Yes. All static susceptibilities are second derivatives of ground state energies with respect to
external fields. Thus they must be given correctly by the variation of the ground state Kohn-
Sham functional as functions of external fields

e Is the macroscopic polarization in a crystal given correctly by the Kohn-Sham theory in terms
of the density n(F) in the bulk of the crystal?
No. It has long been known that the polarization could not be derived simply from the

density. Recent developments derive the polarization from the phases of the
wavefunctions, not given correctly by the Kohn-Sham orbitals

e |s the exact Fermi surface of a metal given by eigenvalues in the exact Kohn-Sham theory?
No. Even though the density is reproduced, the Fermi surface may not be correct due to the
requirement of a local potential

e Must a Mott insulator- an insulator due to correlations among the electrons - be predicted
correctly by the eigenvalues in the exact Kohn-Sham theory?
No. This follows from the above arguments on a metal that the Fermi surface is not correct
in general.

e Are excitation energies given correctly by the eigenvalues of the Kohn-Sham equations?
No. The eigenvalues are not the true energies for adding or subtracting electrons, nor for

neutral excitations

e s any excitation energy given correctly by an eigenvalue of the Kohn-Sham equations?
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Yes. The highest eigenvalue in a finite system must be correct since that state dominates the
long-range tail of the density, which is defined to be correct.

e |sit possible to determine excitation energies by any means using the Kohn-Sham theory?
Yes. This question is in the spirit of the Hohenberg-Kohn existence proofs. Since the Kohn-
Sham density is exact by construction, it follows from the Hohenberg-Kohn theorems that all
properties are determined since the entire hamiltonian is determined. Thus there should be
some way to use the Kohn-Sham potential and eigenfunctions to determine all excitations
exactly, but this requires a theory beyond the naive use of Kohn-Sham eigenvalues. One
approach is to use the eigenstates as the basis for a many-body calculation, which is literally
done in configuration interaction, Monte Carlo, and many-body perturbation theory
calculations. Other formulations incorporate excitations into the Kohn-Sham approach itself,
most importantly, time-dependent Kohn-Sham theory.

It has already been stressed before that density functional theory has evolved into today’s most
widely used method for electronic structure calculations in solids because of the development and
the success of practical, approximate and not overly computationally-demanding functionals. In
particular, the quantity of crucial importance in the Kohn-Sham approach is the exchange-

correlation energy which is expressed as a functional of the density E,_[n]. For this reason, the

next two sections are devoted to the description of two widespread approximations for this
functional: the local density approximation (LDA) and examples of generalized-gradient
approximations (GGAs).

11. THE LOCAL SPIN DENSITY APPROXIMATION (LSDA)

Already in their seminal paper, Kohn and Sham pointed out that solids can often be considered as
close to the limit of the homogeneous electron gas which we already described in the context of HF
theory. In that limit, it is known that the effects of exchange and correlation are local in character,
and they proposed making the local density approximation (LDA) (or more generally the local spin
density approximation (LSDA)) in which the exchange-correlation energy is simply an integral over
all space, with the exchange-correlation energy density at each point assumed to be the same asin a
homogeneous electron gas of interacting electrons with that same local density:

XC

Eiflm[”ir”” N fd.?,.n(r}fhc.&m(nf{r],nl{l‘))

= f Era(r)[e(n(r), n* () + €™ (n (1), n* (1))
(11.1)
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The LSDA can be formulated in terms of either two spin densities n' (r) and n*(r), or the total

density N(r) and the fractional spin polarization &(r):

£(x) = nl(r) — ni{r].
n(r)

(11.2)

The LSDA is the most general local approximation. For unpolarized systems the LDA is found simply
by setting n' (r) =n*(r) =n(r)/2 .

Once one has made the local ansatz of the L(S)DA, then all the rest follows. Since the functional
EXC[nT, ni] is universal, it follows that it is exactly the same as for the homogeneous gas. The only

information needed is the exchange-correlation energy of the homogeneous gas as a function of
density. Since the exchange energy of the homogeneous gas can be calculated analytically using HF
theory (see eq. (5.11)), the local density approximation simply bows down to fitting numerical
correlation energies for the homogeneous gas. A variety of LDA expressions for the correlation
energy have been proposed with time, and the most celebrated are summarized below for reference
purposes. In all cases, the correlation potential is given by:

ry de.(rg)
Fr(rs} = fa‘("‘s} = ? _d.r‘_,,. .
(11.3)

where rs is given by Eq. (5.1)

The first quantitative form for the correlation energy of a homogeneous gas was proposed in the
1930s by Wigner, as an interpolation between low- and high-density limits. At low density the
electrons form a "Wigner crystal" and the correlation energy is just the electrostatic energy of point
charges on the corresponding body- centered cubic lattice. At the time, it was thought that the
exchange energy per electron approached a constant in the high-density limit, and Wigner proposed
the simple interpolation:

& = __o44 (in atomic units = Hartree) (11.4)
r,+7.8

Correct treatment of correlation confounded many-body theory for decades until the work
of Gellmann and Breuckner, who calculated the correlation energy exactly in the high-density limit

I, = 0. For an unpolarized gas the result is:

g.(ry) > 0.311In(r,) —0.048 + r;, (AlIn(ry) +C) +.... (11.5)

where the In terms are the signature of non-analyticity that causes so much difficulty. At
low density the system can be considered a Wigner crystal with zero point motion leading
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to:

a
gc(rs)—>ﬁ+%+%+.... (11.6)
rS rS rS

There has been considerable work in the intervening years, including the well-known form by
Hedin-Lundqvist (HL), derived from many-body perturbation theory using the random phase
approximation (RPA):

2
el(r) = — C—:— [(] +x7)log (I + A—I) . T _x- —] ;

2 3
(11.7)
where A=21,C=0.045,and X =1 /A. The correlation potential is:
Cé’ 1
Vi) =——1log| 1+ -,
2 %
(11.8)

The most accurate results for ground state properties are actually found from quantum Monte Carlo
(QMC) calculations for interacting many-body systems. These results have been fitted to analytic

forms for &, (rS), leading to two widely used functionals due to Perdew and Zunger (PZ) and Vosko,

Wilkes, and Nusiar (VWN), which are very similar quantitatively:

Perdew-Zunger (PZ):

E{P?‘.{n} = —0.0480 + 0.0311n(ry) — m0.0116r; + 0.0020rn(r,), re < |
= —0.1423/(1 + 1.9529./r, + M0.3334r,), P,

(11.9)
The expression for chz is not given here since it is lengthy, but it is straightforward.

Vosko-Wilkes-Nusiar (VWN)
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Correlation energy per electron (Ha)

e Ae? y2 2b
& )= = [Iog {m] - Etan
_ by - [(J-‘ — Yoy’
Y (¥o) Y(y)
(11.10)

Here

(5+3)

2642y,

o (5%)|]

y=r"2Y(y)=y2+by+c,Q = (4c-b2)*? y =-0.104,b =3.72744,c =12.935 and A= 0.062.

The corresponding potential can be obtained from Eq. (11.3) with:

deY"™N @)

ro————"=A

c(y — yo) — byoy

dr,

E'}_
2 (=)0 +by+o)

(11.11)

The QMC results for the correlation energy &.(I5) per electron in an unpolarized gas are shown in

Fig. 11.1 where they are compared with the Wigner interpolation formula, RPA, and improved many-

body calculations of Lindgren and Rosen:

0 T
—0.03}
7
/ o —.— Lindgren—Rosen (1970)
i H/ ——- Wigner (1934
A7 s Ceperley—Alder (1980}
rfl ---- RPA
4 /
]
v Jj
-0.06 . -
0 10
re(ap)

20

Fig. 11.1: Correlation energy of an
unpolarized homogeneous electron gas as a
function of the density parameter rs. The
most accurate results available are QMC
calculations: the curve labelled “Ceperley-
Alder” is the work of those authors fitted to
the VWN interpolation formula ; the PZ fit is
almost identical on this scale. In comparison
are shown the Wigner interpolation
formula, the HL RPA calculations, and an
improved many-body perturbation
calculation (Lindgren-Rosen)
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One very important result is that for materials at typical solid densities (I; ~ 2—6) the correlation

energy is much smaller than the exchange energy; however, at very low densities (large rs)

correlation becomes more important and dominates in the regime of the Wigner crystal (; >~ 80)

The use of the QMC results in subsequent electronic structure calculations relies upon

parameterized analytic forms for E_(r,) fitted to the QMC energies calculated at many

values of rs, mainly for unpolarized and fully polarized (nT =N cases, although some
calculations have been done at intermediate polarization. The simplest form for the correlation
energy as a function of spin polarization is the one made by PZ that correlation varies the same as
exchange:

€c(n,§) =€.(n,0) + [ecln, 1) — eo(n, M] (),

(11.12)

where f, (&) is given by (6.11). The key point is that the formulae fit the data well at typical
densities and extrapolate correctly to the high- and low-density limits, (11.5) and (11.6).

As we already mentioned in the beginning of this section, the rationale behind the local
approximation is that, for the densities typical of those found in solids, the range of the effects of
exchange and correlation is rather short. However, this is not justified by a formal expansion in some
small parameter, and one must test the extent to which it works by actual applications. We expect it
will be best for solids close to a homogeneous electron gas (like a nearly-free-electron metal) and
worst for very inhomogeneous cases, like for the case of atoms where the density must go
continuously to zero outside the atom. Among the most obvious faults of the approximation is the
spurious self-interaction term. In the Hartree-Fock approximation the unphysical self-term in the
Hartree interaction was exactly cancelled by the non-local exchange interaction, as explained in
section 4. However, in the local approximation to exchange, the cancellation is only approximate and
there remain spurious self-interaction terms that are negligible in the homogeneous gas but large in
confined systems such as atoms. Nevertheless, even in very inhomogeneous cases, the LSDA works
remarkably well, the main reason being that it approximates the hole particularly well. The degree
to which the LSDA is successful has made it useful in its own right, and has stimulated ideas for
constructing improved functionals (such as the GGAs described in the next section).

12. GENERALIZED-GRADIENT APPROXIMATIONS (GGAs)

The success of the LSDA has led to the development of various Generalized-gradient approximations
(GGAs) with marked improvement over LSDA for many cases. In this section we briefly describe
some of the physical ideas that are the foundation for construction of GGAs. The first step beyond
the local approximation is the introduction of a functional of the magnitude of the density gradient
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‘Vn"‘ as well as the value n at each point. This is called a "gradient expansion approximation" (GEA).

The low-order expansion of the exchange and correlation energies is known ; however, the GEA does
not lead to consistent improvement over the LSDA, and indeed often yields worse results. The basic
problem is that gradients in real materials are so large that the expansion breaks down.

The term generalized-gradient expansion (GGA) denotes a variety of ways proposed for functions
that modify the behaviour at large gradients in such a way as to preserve desired properties. It is
convenient to define the functional as a generalized form of (11.1):

BSOS 3k = fd3rn(r}exc(nf.n“, \Watl, |Vnt,...)

= dern(r)EE'Um(n}ﬁ'xc(r!T. nt, |Va't|, |Vnrt,..)),
(12.1)

where F,; is dimensionless and €:°m (n) is the exchange energy of the unpolarized homogeneous

electron gas given by (5.11).

For exchange, it is straightforward to show that there is a "spin-scaling relation":

1 : :
Enl,nt] = o [Ei[2n"] + E.[2n]],
(12.2)

where Ex[n] is the exchange energy for an unpolarized system of density n(F) . Thus for exchange
we need to consider only the spin-unpolarized F, (n,|Vn|) . Itis natural to work in terms of

dimensionless reduced density gradients of m-th order that can be defined by:

B _I‘F’"nl B V" n|
= (2kr )y n - zu'rl{jnlprj?-(”)-fl+m,l'3].

S

(12.3)

Since ki = 3(27{/3)]/3 I, Sm is proportional to the mth-order fractional variation in density

normalized to the average distance between electrons r, . The explicit expression for the first
gradients can be written

|Vn| |V r|
I =85= —

(2kpn 22 /3)1Bry

(12.4)
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The lowest order terms in the expansion of F, have been calculated analytically:

— ﬁ' o ow
817" 7 20252 (125)

Numerous forms for Fx(n, S), wheres = S,, have been proposed. These can be illustrated by the

three widely used forms of Becke (B88), Perdew and Wang (PW91), and Perdew, Burke, and
Enzerhof (PBE). In Fig. 12.1, we compare the factors F, for these three approximations.

Fig 12.1: Exchange enhancement factor
F, as a function of the dimensionless
density gradient s for various GGAs.
Note that in the relevant range for most
materials, 0 < S <~ 3, the magnitude
of the exchange is increased by a factor
~1.3-1.6

Most other approximations lead to an Fx that falls between B88 and PBE, so the qualitative results
obtained by employing other functionals can be appreciated from the behavior of these functionals.
As shown in Fig. 8.1, one can divide the GGA into two regions: (i) small s (0 <S <~ 3)and (ii) large s
(S >~ 3) regions.

In region (i), which is relevant for most physical applications, different F,S have nearly identical

shapes, which is the reason that different GGAs give similar improvement for many conventional
systems with small density gradient contributions. Most importantly F, >1, so all the GGAs lead to
an exchange energy lower than the LDA. Typically, there are more rapidly varying density regions in
atoms than in condensed matter, which leads to greater lowering of the exchange energy in atoms
than in molecules and solids. This results in the reduction of binding energy, correcting the LDA
overbinding, and improving agreement with experiment, which is one of the most important
characteristics of present GGAs.

In region (ii), the different limiting behaviors of F,S result from choosing different physical

conditions for S —> 0. In B88-GGA, F2**"°%*(s)~ s/In(s) was chosen to give the correct

44



exchange energy density (&, — —ZI/ZI‘ ). In PW91-GGA, choosing Fxpwgl’GGA(s) ~ s ¥? satisfies the
Lieb-Oxford bound and the non-uniform scaling condition that must be satisfied if the functional is
to have the proper limit for a thin layer or a line. In PBE-GGA, the non-uniform scaling condition was

dropped in favour of a simplified parameterization with FXPBE_GGA (s) ~ const . The fact that

different physical conditions lead to very different behaviors of F,S in region (ii) not only reflects

the lack of knowledge of the large density gradient regions but also an inherent difficulty of the
density gradient expansion in this region: even if one form of GGA somehow gives the correct result
for a certain physical property while others fail, it is not guaranteed that the form is superior for
other properties in which different physical conditions prevail.

Correlation is more difficult to cast in terms of a functional, but its contribution to the total energy is
typically much smaller than the exchange. The lowest order gradient expansion at high density has
been determined to be:

IDﬁ(]

Lo = LD (1)

—~———(1 —0.219, 5 ls + -
(12.6)

For large density gradients the magnitude of correlation energy decreases and vanishes as S, — o .

This decrease can be qualitatively understood since large gradients are associated with strong
confining potentials that increase level spacings and reduce the effect of interactions compared to
the independent-electron terms. As an example of a GGA for correlation, Fig. 12.2 shows the

correlation enhancement factor F"®57°%* for the PBE functional, which is almost identical to that

Cc
for the PW91-GGA.

0.5 S — — -
=10.0 (LDA) ‘
04— - = - = =)
N, | |
\ Fig 12.2: Correlation enhancement factor F,
<« 03 '\- B . | . . [ — , at different electron densities r; as a
E \ | function of the dimensionless density
i“ el \ 3 o= 2.0 (LDA) gradient s for the PBE functional. Other
‘\_\ v B functionals are qualitatively similar
\ \ ]
LN
0.1 Ly =0.5 (LDA)
\ \;..
hi v, e
ol =
0 4 6 B8 10
s

The PBE form is probably the simplest GGA functional, and hence we give it as an explicit example.
The PBE functional for exchange is given by a simple form for the enhancement factor Fy(s) . The
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form is chosen with F, (0) =1 (so that the local approximation is recovered) and F, = constant at

large s:

F($)= 14k —=x/(1 + us?/x),

(12.7)

where x =0.804 is chosen to satisfy the Lieb-Oxford bound. The value of ¢ =0.21951 is chosen

to recover the linear response form of the local approximation, i.e. it is chosen to cancel the term
from the correlation. This may seem strange, but it is done to agree better with quantum Monte
Carlo calculations. This choice violates the known expansion at low s given in Eq. (12.5), with the
rationale of better fitting the entire functional.

The form for correlation is expressed as the local correlation plus an additive term both of which
depend upon the gradients and the spin polarization. The form chosen to satisfy several conditions
is:

EGOA-PBE[,t pd] — f &rn [y, £)+ H(ry, £, 1]
: (12.8)

where ¢ = (nT - n¢ )/n is the spin polarization, rs is the local value of the density parameter, and t

is a dimensionless gradient t = |Vn|/(2¢kTFn). Here ¢ = ((1+ 4”)2/3 +(1— 5)2/3 )/2 and t is scaled

by the screening Thomas-Fermi wavevector kg rather than k¢ . The final form is:

e’ B 1 + Af?
H=—yd’log |1+ =1* )
nuwb & ( v 1+ A2 + A%

(12.9)
The function A is given by
~1
A —ehom
A==]ex . = ]~ |
Y Y’ s
(12.10)
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13.LDA AND GGA EXPRESSIONS FOR THE EXCHANGE-
CORRELATION POTENTIAL

The part of the Kohn-Sham potential due to exchange and correlation V (r) is defined by

the functional derivative in (10.17). The potential can be expressed more directly for LDA and GGA
functionals, (11.1) and (12.1), since they are expressed in terms of functions (not functionals) of the

local density of each spin n(F, o) and its gradients at pointr.

In the LDA, the form is very simple,

dehom
8ExIn]= Zfdr [e,':fm +nﬁ:l Sn(r, o),
a r.o

(13.1)
so that the potential,

-}Ehom

h oc,

w(r)—[ e +n > === a
on o

(13.2)

involves only ordinary derivatives of 5h°m (nT, ni) . Here the subscript F, o means the quantities in
square brackets are evaluated for n? = n(F, o). The LDA exchange terms are particularly simple:

3
since £/°"(n”) scales as (n") it follows that:

4
V@) = ie_':““{rifr. a)).
(13.3)

In the GGA one can identify the potential by finding the change §Exc[n] to linear order in onand
ovn=von:

e D
SE,[n] = § | f dr[eu +ns a{;:: V] sn(r, ).
r.a

(13.4)

The term in square brackets could be interpreted as the potential; however, a close inspection
reveals that it does not have the form of a local potential because of the last term, which is a
differential operator. There are three main approaches to handling the last term. The first is to find a

local V2 (r) by partial integration (see App. A) of the last term in the square brackets to give;
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d€y €y
"'rﬂ. I') = e +n — _— v =
xe(r) I:E "one (”H?n" 4
@ (13.5)

This is the form most commonly used; however, it has the disadvantage that it requires higher
derivatives of the density that can lead to pathological potentials and numerical difficulties, for
example, near the nucleus or in the outer regions of atoms, where the density is rapidly varying or is
very small.

A second approach is to use the operator form of V] (F) in (13.4) directly by modifying the Kohn

Sham equations. Using the fact that the density can be written in terms of the wavefunctions v/, ,

the matrix elements of the operator can be written (for simplicity we omit the variables r and o )

(W}Ii}xulwi} — j [ﬁm@jﬂ! : !F;Vn " VW: + (Vi * V‘HWJ’.] ’
(13.6)

where Vo = £, + n(d¢,/on) and Ve = n(d¢,,/0VN). This form is numerically more stable,

but however it requires inclusion of the additional vector operator in the Kohn-Sham equation,
which may significantly increase the computational cost.

Finally, a different approach is to treat E,. strictly as a function of the density, with the gradient

terms defined by an operational definition in terms of the density. Then (13.4) can be written using
the chain rule as:

'] X
dExc[n] = Z[dr [Fxc s !!;—Z?] én(r, o)
o r.o

06, dVn(r')
-+ ; ffdrdl"ﬂ(r)[av”—ﬂ]rr Tmﬁnir. o),

(13.7)

where (Wn(?)/cin(F)) denotes a functional derivative (which is independent of spin). For

example, on a grid, the density for either spin is given only at grid points n(Fm) and the gradient at

grid point rp,, Vn(ﬂ) , is determined by the density by a formula of the form:
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v”{rﬂl:' — z CH#—HJ"'H([.JHrJ!

m’ (13.8)

so that

SVn(r,) avn(r,)
3!.‘(]‘,,.-} H'i{rm") B

m=—pm' =

(13.9)

m"

(Note that each C,,. = {Crf]..,C%..,CZ } is a vector in the space coordinates). In a finite difference

method, the coefficients C_. are nonzero for some finite range; in a Fourier transform method, the

C,.. follow simply by noting that

! 1 ”
Vn(r,) = ZEGH(G}E'{”‘" i Z iGe'C m=Fe )y, ).

G G.m (13.10)

Finally, varying n(rm,a) in the expression for E,. and using the chain rule leads to

HE“] [ deye Vn ]
Ve(Tm) = | € + n—— + n - —
< Tm) |: ne dn e Z a|Vn| |Vn| 5 "

m'

(13.11)

This form reduces the numerical problems associated with (13.5) without a vector operator as in
(13.6). Note that V] (a) is a non-local function of n(rm , 0'), the form of which depends upon the

way the derivative is calculated. This is an advantage in actual calculations because it ensures

consistency between E,. and V,_.
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14. SOLVING THE KOHN-SHAM EQUATIONS

The solution procedure for the Kohn-Sham equations derived in Sec. 10 are summarized in the flow
chartin Fig. 14.1.

Self-consistent Kohn—Sham equations

Initial guess

nt(r), nt(r)

_F

L
Calculate effective potential

V5Ar) = Vex() + Vitanreeln] + VInT, n']

l

Solve KS equation

l

Calculate electron density

() = ¥, 17 [ve o

Self-consistent?

Qutput quantities

Energy, forces, stresses, eigenvalues, . ..

Fig 14.1: Schematic representation of the self-consistent loop for solution of the KS equations. In general, one
must iterate two such loops simultaneously for the two spins, with the potential for each spin a functional of
the density of both spins.

The Kohn-Sham equations are a set of Schroedinger-like independent-particle equations which must

be solved subject to the condition that the effective potential Vg (F) and the density n(?, o) are

consistent. The explicit reference to spin will be dropped, except where needed, and notation V
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and n will be assumed to designate both space and spin dependence. An actual calculation utilizes a

numerical procedure that successively changes V; and n to approach the self-consistent solution.

The computationally intensive step in Fig. 13.1 is "solve KS equation" for a given potential V . Here

this step is considered a "black box" that uniquely solves the equations for a given input V " to

determine an output density N°", i.e. V" > n°" . Conversely, for a given form of the xc functional,

any density n determines a potential V4 , as shown in the second box.

The problem is that, except at the exact solution, the input and output potentials and densities do
not agree. To arrive at the solution one defines operationally a new potential N°" —V ™", which

can then start a new cycle with V™" as the new input potential V™ . Clearly, this procedure s can be
made into the following iterative progression:

Vi—=ni = Viyg = nig — ..

(14.1)

where i labels the step in the iteration. The progression converges with a judicious choice of the new
potential in terms of the potential or density found at the previous step (or steps).

Methods for reaching self-consistency are described in section 16. However, it is first best to probe
the nature of various possible total energy functionals. The expressions are needed for the final
calculation of the energy and, in addition, the behavior of any of the functionals near the correct
solution provides the basis for analysis of the convergence characteristics using that functional.

15. TOTAL ENERGY FUNCTIONALS

The subject of this section is the behaviour of various functionals, all of which have the same
minimum energy solution of the Kohn-Sham equations, but behave differently away from
the minimum. In terms of the Kohn-Sham equations, this means the behaviour as a functional of the

in out

difference of input and output quantities AV =V —=V™ and An=n""—n™, where n°" is the

resulting density from solving the KS equation with the potential V ™ Itis essential to utilize correct
variational expressions in order to have the desired variational properties.

We repeat here the original expression for the Kohn-Sham energy functional for convenience, with

all the potential terms grouped together to define Epot[n] :

Il

Exs Ti[n] + Epot[n]-

Epaln] = fdrvm{r)n(r} + Emaneee[n] + Eqp + Exc[n].
(15.1)

The first three terms on the right-hand side of the second equation together form a neutral
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grouping equal to the classical Coulomb interaction ECC . Since the eigenvalues (the Lagrange
parameter) of the Kohn-Sham equations are given by:

gl = (Y7 1Hgs|l¥7),

(15.2)
the kinetic energy can be expressed as
T. = E;, — E fdr Vo (on®™(r, o),
" (15.3)
where E; is simply the sum of all the eigenvalues over all spins:
I|n||lrrr
E, = E E & .
1
= A (15.4)

The advantages of this formulation are that the eigenvalues are available in actual calculations and,

furthermore, Eg in (15.4) is itself a functional.

Although the Kohn-Sham energy (15.1) is, in principle, a functional of the density, it is
operationally a functional of the input potential E, [V in] , as indicated in the flow chart (Fig. 14.1).

(Note that we use V here to denote the potential for each spin, V”(F) ). At any stage of a Kohn-

Sham calculation when the energy is not at the minimum, V " determines all the guantities in the

energy. This is clearly shown if we write E, from (15.1) as:

Exs[V™ = E,[VI" - ) | f dr Vo @n™(r, o) + Epaln®™],
? (15.5)

where the first two terms on the right-hand side are a convenient way of calculating the

independent-particle kinetic energy as in (15.3), and E__ is the sum of potential terms given in

pot

*' Since Eg isthe sum of eigenvalues, (15.4), and n®" (F, o) isthe

(15.1) evaluated for n=n
output density, each determined directly by the potential V n , clearly the energy E,; is itselfa

functional of V™"

The solution of the Kohn-Sham equations is for the potential V ™ that minimizes the energy, (15.5).

Then V" =V, , the output density N°" is the ground state density N° , and the potential and
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density are consistent with the relation in (10.12). The functional EKS[\/ in] is variational and all
other potentials lead to KS energies that are higher by an amount that is quadratic in the error

v —V,s . Near the minimum energy solution, the error in the energy must also be quadratic in the

0

error in the density on = n®™ —n , So that:

- | 8%Exs .
Exs[V"] = ExslVks] + 5 ;fdrdr’ [ﬁﬂ(r, enir. cr’)]"u dn(r, o)on(r', ’),

(15.6)
where the second term is always positive.

One can choose different expressions for the total energy functional that are given explicitly in terms
of the density. The functional, known as the Harris-Weinert-Foulkes (HWF) functional, is cast in

terms of the density n" that, via (10.12), determines the input potential V[nin] EVnin . Thisin turn
leads directly to the sum of eigenvalues, the first term on the right-hand side of (15.5). The energy is
then defined by evaluating the functional Epot[nm] in (15.1) in terms of the chosen input density

out

n" (F, o) (instead of the output density n (F, o) as in the Kohn-Sham functional):

Enwrln™ = Es[Vyu] — Zfdr Vo@n"(r,0) + Epuln™).
? (15.7)

The stationary properties of this functional can be understood straightforwardly. For a given input

density n" and potential Vnin , the difference in the two expressions for the energy involves only the

potential terms:

Exs[V"™] — Euwrln"™] = Z[ﬂr V(@) [0 (r, 0) — n"™(r, 0)]

+ [Epa[n™] = Epe[n™1]].
(15.8)

Near the correct solution where An=n®"—n" is small, one can expand the difference in (15.8) in
powers of An. The linear terms cancel (which follows from the fact that

Ve (r)= [5Epm/(5n(F, U))} ) so that the lowest order terms are:

Exs[V'™] — Epweln™] ~ % Z f drdr’ K(r, o;r', 0"),e An(r, 0)An(r', o),
o’

L

(15.9)
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where the kernel K is defined to be :

8% Eyxeln
K(r,o;r,c")= ML= . r ] -
Sn(r, a)én(r’, o)
LB 52 Eyc[n)
jr — | sn(r, o)dn(r’', o) (15.10)
evaluated for N =n" (Note that K has been defined in terms of E,, .[n]= E,, ...[N]+E,.[n]; the

other termsin E_, [n] do not contribute since they are constant or linear in n.) Since the
differences in the energies are quadratic in the errors in the density, it follows that at the exact
solution where An(F, o) =0, the HWF functional equals the usual Kohn-Sham energy and it is
stationary. However, it is not variational, which can be seen from (15.9). Since the kernel K tends to

be positive, then E, - [N"] is lower than E,[V™]. Thus, even though E, [V"] is always above
the Kohn-Sham ground-state energy (or equal at the exact solution), E, - [n‘”] may be lower by an

amount that is second order in the error An(r, o).

The primary advantage of the explicit HWF functional of the density (15.7) is that, for densities

near the correct solution, it can accurately approximate the true Kohn-Sham ground state energy. In
particular, it is often an excellent approximation to stop the calculation after one calculation of
eigenvalues with no self-consistency: in this case one does not even need to calculate the output
density. This approach is remarkably successful if n(F) is approximated by a sum of atomic

densities. For this reason, In a full self-consistent calculation the HWF functional (15.7) is useful at
each step of the iteration in Fig. 14.1. It is now standard to calculate both KS and HWF energies,
(15.5) and (15.7), at each step in the iteration. It is also very useful to calculate both energies and
treat the difference as a measure of the lack of self-consistency during a calculation.

It is also possible to define functionals of the density and potential varied independently, thus

effectively combining the KS and HWF functionals together. We will denote n and V by n™and V" to
emphasize that both are independent input functions. The expression is exactly the same as (15.7),

except that V s regarded as an independent function so that the expression can be written:

E[V'™ n'"] = E,[V"™] — Z[ Vo (r)n"(r, o )dr + Epuln™].
o (15.11)

The first term is solely a functional of V n , the last term is a functional only of n" , and the only
coupling of V Mand N is through the simple bilinear second term. The properties of the functional

can be seen clearly. Considering variations around any V" and n", to linear order:
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SE[V"™,n"] = Zf [Via(r) — V™"(r)] én(r, o)dr

+ Zf [ (r, 0) — n'"(x, 0)] 5V (r)dr,

(15.12)

where V ¢ (F) = [5Epot/(5n(F, 0))} _is the potential determined by the input density (as used in
nln

(15.7)) and n\c/’?nt (F,G) is the output density determined by the potential V" (as used in (15.5).

Since the terms in brackets vanish at self-consistency, the functional is stationary and the value

equals the Kohn-Sham energy E, [V 1.

16. ACHIEVING SELF-CONSISTENCY

A key problem is the choice of procedure for updating the potential V° or the density N’ in each
loop of the Kohn-Sham equations illustrated in Fig. 14.1. Obviously one can vary either V7 or n?,

but it is simpler to describe in terms of N, which is unique, whereas V  is subject to shift by a
constant. (The spin index o is omitted below for simplicity)

The simplest approach is linear mixing, estimating an improved density input niiil atstep i+1 asa

out

fixed linear combination of N and N*" at step i:

in ol in in oul in
niy=an; + (1 —-a)n’ =n"+an™ —n;"). 16,1

This is the best choice in the absence of other information and is essentially moving in an
approximate "steepest descent" direction for minimizing the energy.

Why cannot one simply take the output density at one step as the input to the next?
What are the limits on a? How can one do better? The answers lie in linear analysis of
the behavior near the minimum. As in (15.6), let us define the deviation from the correct density to

be dn=n-n, atany step in the iteration. Then near the solution, the error in the output density

to linear order in the error in the input is given by:

dn™[n™ = n™ — ngs = (¥ + D™ — nks),

where

Snﬂlll Sn""“l S Vin

- Snin == Syin gpin”

(16.2)
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Here é\/i"/§ni" is K defined in (15.10). Thus the needed function ;( can be calculated and is closely

related to other uses of response functions. The best choice for the new density is of course one that

in out

would make the error zero. i.e. N; =N, .Since N~ and niin are known from step i, if y is also

known, then (16.2) can be solved for N, :

in ~ —| out in
ngs =n; — x n.:" —n: ).
' ( ; ') (16.3)

If (9.23) were exact, this would be the answer and the iterations could stop; since it is not
exact, this only gives the best input for the next iteration.

Although (16.3) is a more complex integral equation, it bears a strong resemblance to the

linear-mixing equation (16.1). If we resolve the response function ;? into eigenfunctions

;((F, )= Zmlm f, (r) f. (r"), the eigenvalues X 8ive the optimal o for the change in density
resolved into the density eigenvectors fm (F) . Furthermore, the radius of convergence of the linear-

~-1 ~ ~-1
mixing scheme is determined by the maximum eigenvalue y, .. :]/;(min of the matrix ¥ .Ifa

constant a is used, it is straightforward to show that the maximum error at iteration i varies as

~1 \! ~1 ~
(1—a;(max) , so that the iterations converge only if o < Z/Zmax =2 min -

Physically, the response of the system is a measure of the polarizability. Linear mixing with large a
works well for strongly bound, rigid systems, such as regions near atom cores. However,
convergence can be very difficult to achieve for "soft cases." for which metal surfaces are an
especially difficult example.
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A. MATHEMATICAL APPENDIX®

The difference between a function f(x) and a functional F[f] is that a function is defined to be a
mapping of a variable x to a result (a number) f(x), whereas a functional is a mapping of an entire
function f to a resulting number F[f] (in simple words, a function of a function). The functional F[f],
denoted by square brackets, depends upon the function f over its range of definition f(x) in terms of

its argument x. Here we describe some basic properties related to the functionals and their use in
density functional theory

To illustrate functionals F[f] we first consider two simple examples:

e Adefinite integral of W(X) f (X), where w(x) is some fixed weighting function.

I f1= f " W) (s,

'I'.rl i

(17.1)

e Theintegral of ( f (X))a where a is an arbitrary power:

LLf] = f ™ o)z,

(17.2)

A functional derivative is defined by a variation of the functional

- §F
SFLf1=FLf +8f]— F[f] = f St s,

(17.3)

where the quantity §F/§f (X) is the functional derivative of F with respect to variation of f(x) at

the point x. In Eq. (17.1), the fact that the functional is linear in f(x) leads to a simple result for the
functional derivative:

® These notes are intended to provide a very concise overview of the theory of functionals and of
their use in the context of Density Functional Theory. For a complete explanation, see for example
chapter 22 of “Mathematical Methods for Physics and Engineering’’ by KF Riley, MP Hobson, SJ

Bence (2™ Edition, Cambridge University Press), or any other general textbook on Mathematical
Methods.
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LI w(x)
0f(x) | (17.4)

The second example of a non-linear functional is of the form needed to minimize the Thomas-Fermi

expression, Eq. (8.4):

8,
5f(x)

fooy,

(17.5)

following the same rules as normal differentiation. In general, however, the functional
derivative at point x depends also upon the function f(x) at all other points. Clearly, the
definition can be extended to many variables and functions F[f1,f2, ...].

In Kohn-Sham density functional theory, the potential, Eq. (10.12), is a sum of functional
derivatives. The external term has the linear form of Eq. (17.1); the Hartree term is also

simple since it is bilinear; and V,J (F) is found by varying the more complex functional

having the form:

&mu=fmnmmumvmmMn

(17.6)
Variations of the gradient terms can be illustrated by the general form:
I[n] = f g(f(r), |V f(r))dr.
(17.7)

so that varying the function f leads to:

afle = —AHV
mfl_[[ fﬁ+mvﬂt ﬂm] B

Now using:
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V f(r) _ V f(r)
IV IV f)l

oIV f(r)| =&V f(r)- - V[3f(r)]

(17.9)
and integrating by parts, one finds a standard form of variations of gradients:
dg dg  Vi(r)
g, fl= — -V |—=—— 8 f(r)dr.
] ”af [5IVfI lVf(rH]’ 2

REFERENCES

e NW Ashcroft, ND Mermin: Solid State Physics (Harcourt College Publishers, 1976)

e G Grosso, GP Parravicini: Solid State Physics (Academic Press, 2000)

e RM Martin: Electronic Structure, Basic theory and practical methods (Cambridge University

Press, 2004)

e Riley, MP Hobson, SJ Bence: Mathematical Methods for Physics and Engineering (2™

Edition, Cambridge University Press, 2002)

59



60



61



62



