SOLID STATE PHYSICS

By definition, solid state is that particular aggregation form of matter characterized by strong
interaction forces between constituent particles (atoms, ions, or molecules). As a result, a
solid state material has an independent geometric form (in contrast to liquids, which take the
form of the container) and an invariant volume (in contrast to gases/vapors) in given
temperature and pressure conditions. As temperature increases, a solid state material can
evolve into another aggregation form (liquid or gas). Solid state physics studies the structural,
mechanical, thermodynamic, electrical, magnetic, and optical properties of (poly-)crystalline

and non-crystalline solids (for example, amorphous materials, such as glass).

Crystal structure

The properties of crystalline solids are determined by the symmetry of the crystalline lattice,
because both electronic and phononic systems, which determine, respectively, the electric/
magnetic and thermal response of solids, are very sensitive to the regular atomic order of
materials and to any (local or non-local) perturbation of it. The crystalline structure can be
revealed by the macroscopic form of natural or artificially-grown crystals (see the pictures

below), or can be inferred from the resulting debris after cleaving a crystalline material.

Crystals of (a) baryt, (b) salt, (c) hexagonal beryl, (d) trigonal quartz, () monoclinic gypsum,
and apatite (f)
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Non-crystalline materials have no long-range order, but at least their optical properties
are similar to that of crystalline materials because the wavelength of the incident photons (of
the order of 1 um) is much larger than the lattice constant of crystals and so, photons “see” an
effective homogeneous medium. Other properties of non-crystalline materials are derived
based on concepts proper to crystalline solids and, therefore, the crystal structure is extremely
important in understanding the properties of solid state materials.

The macroscopic, perfect crystal is formed by adding identical building blocks (unit
cells) consisting of atoms or groups of atoms. A unit cell is the smallest component of the
crystal that, when stacked together with pure translational repetition, reproduces the whole
crystal. The periodicity of the crystalline structure that results in this way is confirmed by X-
ray diffraction experiments. The figures below illustrate crystals in which the basis consists of

(a) one atom and (b) two atoms.

Bravais basis crystal Bravais basis crystal
lattice lattice

. ° .. ° .
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b ® ..(a) ° ]

(b)

The group of atoms or molecules that forms, by infinite repetition, the macroscopic
crystal is called basis. The basis is positioned in a set of mathematical/abstract points that
form the lattice (also called Bravais lattice). So, a crystal is a combination of a basis and a
lattice. Although usually the basis consists of only few atoms, it can also contain complex
organic or inorganic molecules (for example, proteins) of hundreds and even thousands of
atoms.

In two dimensions, all Bravais lattice points

R, =ma, + na, 1)

can be obtained as superpositions of integral multiples of two non-collinear vectors a, and a,

(m and n are arbitrary integers). A basis consisting of s atoms is then defined by the set of
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vectors r; =m;a, +n;a,, j = 1,2,...,s, that describe the position of the centers of the basis
atoms with respect to one point of the Bravais lattice. In general, 0 <m;,n; <1.

Every point of a Bravais lattice is equivalent to every other point, i.e. the arrangement
of atoms in the crystal is the same when viewed from different lattice points. The Bravais

lattice defined by (1) is invariant under the operation of discrete translation T, = pa, +qa,

along integer multiples p and q of vectors a, and a,, respectively, because

qu (Rmn) :qu + Rmn = Rp+m,q+n (2)

is again a Bravais lattice point. In fact, since the translation operation is additive, i.e.

TooTw =Tpiuge, associative, ie. T, (TyTn)=(T,Tw)Tw, commutative, ie. T,T, =

Tw Ty and has an inverse, such that T, =T and T, T, =1 with I the identity

Pq -p.—q
transformation, it follows that the translations form an abelian (commutative) group. Because
condition (2) is satisfied for all Bravais lattice points, a, and a, are called primitive
translation vectors, and the unit cell determined by them is called primitive unit cell. The
modulus of these vectors, a, =|a,| and a, =|a, |, are the lattice constants along the
respective axes, and the area of the unit cell in two dimensions is S =| a, xa, |. It is important
to notice that the set of vectors a, and a, is not unique (see the figures below), but all

primitive unit cells have the same area.

L. VL. 7ar

primitive unit primitive unit | |
cell ‘ cell | l
non-primitive NON-PHMILIVE m—
unit cell — ——— unit cell

The primitive unit cell covers the whole lattice once, without overlap and without
leaving voids, if translated by all lattice vectors. An equivalent definition of the primitive unit

cell is a cell with one lattice point per cell (each lattice point in the figures above belong to
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four adjacent primitive unit cells, so that each primitive unit cell contains 4x(1/4) = 1 lattice
point). Non-primitive (or conventional) unit cells are larger than the primitive unit cells, but
are sometimes useful since they can exhibit more clearly the symmetry of the Bravais lattice.

Besides discrete translations, the Bravais lattice is invariant also to the point group
operations, which are applied around a point of the lattice that remains unchanged. These
operations are:

o Rotations by an angle 2z /n about a specific axis, denoted by C,, and its multiples,
CJ =(C,)'. Geometric considerations impose that n = 1, 2, 3, 4 and 6, and that
repeating the rotation n times one obtains C; = E , where E is the identity operation,

which acts as r — r . Moreover, C, = 2z = E does not represent a symmetry element.

The allowed values of n can be determined assuming that we apply a rotation with an
angle @ around an axis that passes first through a point A and then through an adjacent
lattice point B. The points A and B are separated by the lattice constant a. If C and D
are the resulting points, they should also be separated by an integer multiple of a. From
the requirement that CD = a+2asin(@—=/2)=a—-2acosfd = ma, or —1<cosé =
(1-m)/2 <1, with m integer, it follows that m can only take the values -1, 0, 1, 2, and
3, the corresponding n=2x/6 taking the values specified above. As for translations,
the rotations also form an abelian group.

Examples of two-dimensional figures with different rotation symmetries:

o A\ OO

C Cs Cs Ce
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o Inversion I, which is defined by the operation r — —r if applied around the origin.

o Reflection o, which can be applied around the horizontal plane (j = h), the vertical

plane (j = v), or the diagonal plane (j = d).

o Improper rotation S,, which consists of the rotation C, followed by reflection in

the plane normal to the rotation axis. Note that S, =1 .

When we combine the point group symmetry with the translational symmetry, we
obtain the space-group symmetry. It is important to notice that the basis can introduce
additional symmetry elements, such as helicoidal symmetry axes and gliding reflection
planes. The figure bellow represents several symmetry operations: (a) translations, (b)

rotation, (c) inversion, and reflection with respect to a (d) vertical, and (e) horizontal plane.

Crystal lattices are classified according to their symmetry properties at point group

operations. The five Bravais lattice types in two dimensions are shown in the figure below.

These are:

o square lattice, for which |a, |4 a, |, and y= 90°, where yis the angle between a; and
a,

o rectangular lattice, for which |a, |# a, |, and y=90°,

o centered rectangular lattice, which is a rectangular lattice with an additional lattice

point in the center of the rectangle,

o hexagonal lattice, for which |a, |5 a, |, and y = 60° (or 120° for a different choice of
the origin),
o oblique rectangular lattice (called also oblique lattice), for which |a; |#| a, |, and y =

90°, 60° (or 120°).
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With the exception of the centered rectangular

lattice, all unit cells in the figure above are primitive unit
cells. The primitive cell for the centered rectangular lattice

is a rhombus (see figure at right) and therefore this Bravais

lattice is also called rhombic lattice, case in which its

primitive unit cell has | a; |[< a, |, and y= 90°, 60° (or 120°).

Each lattice type has a different set of symmetry operations. For all Bravais lattice
types in two dimensions, the rotation axes and/or reflection planes occur at lattice points.
There are also other locations in the unit cell with comparable or lower degrees of symmetry

with respect to rotation and reflection. These locations are indicated in the figure below.

O Two-fold rotation axis | Mirror symmetry planc

& Three-fold rotation axis + Orthogonal mirror planes
[_] Four-fold rotation axis

* Mirror planes every 45°
O Six-fold rotation axis

e el |
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In order to incorporate the information about the point group symmetry in the
primitive cell, the Wigner-Seitz cell is usually employed. This particular primitive unit cell is
constructed by first drawing lines to connect a given lattice point to all nearby lattice points,
and then drawing new lines (or planes, in three-dimensional lattices) at the mid point and
normal to the first lines. The Wigner-Seitz cell is the smallest area (volume) enclosed by the
latter lines (planes). An example of the construction of a Wigner-Seitz cell for a two-
dimensional oblique lattice is illustrated in the figure below. For a two-dimensional square
lattice the Wigner-Seitz cell is also a square. The Wigner-Seitz cell is always centered on a
lattice point and incorporates the volume of space which is closest to that lattice point rather

than to any other point.

P
AV

7 \

The faces of the Wigner-Seitz cell satisfy the relation rcosd =R/2, where R is the
distance to the nearest neighbor and & is the angle between r and R. This relation can be
rewritten as 2(r - R) = R or, since the equation is equivalent to the replacement of R with

~R, 2r-R+R? =0, and finally, (r + R)?> =r?. In other words, the faces of the Wigner-

Seitz cell are determined by the intersection between equal-radius spheres centered at the
nearest-neighbor points of the Bravais lattice.

In a similar manner, in three dimensions, all Bravais lattice points
Ry = Ma; +Na, + pa; (3)

can be obtained as superpositions of integral multiples of three non-coplanar primitive

translation vectors a,, a, and a; (m, n, and p are arbitrary integers), and the point group
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operations are defined identically. The volume of the primitive unit cell, which in this case is

a parallelepiped, is Q = (a; xa,)-as |.

There are 14 three-dimensional Bravais lattices, which belong to 7 crystal systems, as

can be seen from the figure below, where the primitive translation vectors are denoted by a, b,

¢ (with respective lengths a, b, and c¢), and «, £, y are the angles between b and c, ¢ and a, and

a and b, respectively. These crystal systems, which are different point groups endowed with a

spherical symmetric basis, are:

cubic, for whicha =b =c, = = y=90°. It consists of three non-equivalent space-
group lattices: simple cubic, body-centered cubic, and face-centered cubic. This is the
crystal system with the highest symmetry and is characterized by the presence of four

C, axes (the diagonals of the cube)

tetragonal, for whicha =b = ¢, @ = = y=90°. It encompasses the simple and body-

centered Bravais lattices and contains one C, symmetry axis.

orthorhombic, for which a = b # ¢, a = = y=90°. It incorporates the simple, body-
centered, face-centered, and side-centered lattices and has more than one C,

symmetry axis or more than one reflection plane (actually, three such axes/planes,
perpendicular to each other).

hexagonal, for whicha=b #c, a= #=90° »=120°. It
is characterized by the existence of a single Cq

symmetry axis. The conventional hexagonal unit cell

(see the figure at right) is composed of three primitive

cells.

trigonal, for whicha=b =c, a= = y= 90°. It contains a single C, axis.

monoclinic, for which a # b # ¢, « = y = 90°% £ . It includes the simple and side-
centered lattices, and has one C, symmetry axis and/or one reflection plane

perpendicular to this axis.

triclinic, for which a # b = ¢, a # f# y# 90°. This is the crystal system with the
lowest symmetry. It is not symmetric with respect to any rotation axis or reflection

plane.
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7 Crystal Classes
— 14 Bravais Lattices

The relations between these lattices can be summarized Cubic

in the figure at the right.
Hexagonal Tetragonal

The different crystal systems have different {
numbers of unit cell types because other possible unit Trigonal e
cell types cannot represent new Bravais lattices. For Monoclinic
example, both the body-centered and the face-centered Triclinic
monoclinic lattices can be reduced to the side-centered

lattice by appropriately choosing the primitive

translation vectors.

Examples of two sets of primitive translation vectors for a body-centered cubic (bcc)
lattice are represented in the figure below at left and center, while the figure at right displays a

set of primitive translation vectors for a face-centered cubic (fcc) lattice.
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The primitive translation vectors for the left figure above can be expressed as

a,=(al2)(x+y-2),a,=(al2)(-x+y+2),a;,=(al2)(x-y+2), 4)

while those for the right figure are

a, =(@l2)(x+y),a,=(@l2)(y+z), a;=(al/2)(z+ x) (5)

and the angles between these vectors are 60°.

A simple lattice has lattice points only at the corners, a body-centered lattice has one
additional point at the center of the cell, a face-centered lattice has six additional points, one
on each side, and a side-centered lattice has two additional points, on two opposite sides. The
simple lattices are also primitive lattices and have one lattice point per cell, since the eight
sites at the corners are shared by eight adjacent unit cells, so that 8x(1/8) = 1. The non-simple
lattices are non-primitive. The volume of the primitive unit cell in these lattices is obtained by
dividing the volume of the conventional unit cell by the number of lattice points. In particular,
the body-centered lattices have two points per unit cell: the eight at the corners which
contribute with 8x(1/8) = 1, and the one in the center, which belongs entirely to the unit cell.
The face-centered lattices have 4 lattice points per cell: those in the corners contribute with
8x(1/8) = 1, and those on the faces contribute with 6x(1/2) = 3, since they are shared by two
adjacent cells. Finally, the side-centered lattices have two lattice points per cell: the points at
the corner contribute with 8x(1/8) = 1, and those on the faces with 2x(1/2) = 1. The
characteristics of the cubic lattices with side a are summarized in the table below. If each
lattice point is expanded into a sphere with a radius equal to half of the distance between
nearest neighbors, such that adjacent spheres touch each other, then a packing fraction can be

defined as the fraction between the volume of the spheres contained in the conventional unit
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cell and the volume of the unit cell. Note that in the volume between the spheres one can

always insert smaller spheres, which can stand for other atom types.

Simple Body-centered Face-centered
Volume of a’ a a°
conventional cell
Lattice points per 1 2 4
cell
Volume of primitive a’ a’l2 a’l4
cell
Number of nearest 6 8 12
neighbors
Nearest-neighbor a V3a/2 a2
distance
Number of second 12 6 6
neighbors
Second-neighbor \2a a a
distance
Packing fraction /6 = 0.524 V3n/8 = 0.68 \21/6 = 0.74

The 14 Bravais lattices incorporate all possible crystalline structures; they result by taking
into consideration the space-group symmetry, i.e. the symmetry at translations and the point
group symmetry of the lattice (the symmetry with respect to rotation, reflexion or inversion).
When the basis consists of only one atom, the Bravais lattice is identical with the crystalline
structure. But when the basis is complex and consists of several atoms, say s, the crystalline
structure can be seen as formed by the interpenetration of s Bravais lattices. The Bravais
lattices have always an inversion center in one of the lattice points, whereas such an inversion
center can lack in crystals with complex bases.

By counting the point groups of the possible different crystals (which have bases with
different symmetries), one ends with 32 crystalline classes that can be accommodated by the 7
crystal systems. Also, there are 230 space groups that result from the combination of the 32
crystalline structures with the translational symmetry.
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Index system for lattice points, directions and planes
When the origin of the primitive translation vectors is a lattice point, another lattice point

with a position R,,, =ma, +na, + pa; is simply specified by the set of numbers [[m,n,p]]. A
negative integer m, n or p is denoted by a — sign placed on top of it. For example, [[mnp]]

stays for the lattice point specified by the integers m, —n and p, with m, n and p positive
numbers. In particular, for the three-dimensional primitive Bravais lattices the coordinates of
the lattice point at the origin are [[0,0,0]], the other lattice points differing only through
discrete translations along the three coordinate axis. The number of non-equivalent lattice
points in a Bravais lattice is given by the number of lattice points per unit cell. In particular,
for the body-centered lattice, the position of the lattice point at the center of the cube is
denoted by [[1/2,1/2,1/2]], the three additional lattice points in face-centered lattices having
coordinates [[0,1/2,1/2]], [[1/2,0,1/2]], [[1/2,1/2, O]]. In a similar manner, depending on the
set of opposite sites they can occupy, the additional site in a face-centered lattice has the
coordinates [[0,1/2,1/2]], [[1/2,0,1/2]] or [[1/2,1/2,0]].

A direction, by definition, passes through two lattice points. To specify a direction in
a crystalline lattice, one uses the symbol [mnp], where m, n and p are three integers
determined by the following rule: since one can specify a direction by the coordinates

[[m,,ng, p.1] and [[m,,n,, p,]] of two points through which it passes, the indices m, n and p

are defined as the smallest integer numbers that satisfy the proportionality relations

m_m,-m n_n,-n P_P2—P (6)
n n,—-m P P=P m m,-m

or

m:n:p=(m,-m;):(n, —ny):(p,—p). (7)

If one of the integers is negative, the — sign is placed on top of the integer. For example,

[mnp] stays for the direction specified by the integers m, —n and p. If the direction is not

considered as an oriented axis but as a simple line, the direction specified by the integers m, n,
and p is the same as that specified by —m, —n, and —p (otherwise, the change of all signs
means a change of direction of the same line). If there are several equivalent directions

(equivalent, from the point of view of crystal symmetry), they are denoted as (mnp). A
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particular situation is encountered in the hexagonal lattice, in which lattice directions are

labeled by four numbers (this situation is not further discussed in this course).

Examples: The a, axis is the [100] direction. The —a, axis is the [010] direction. Other

examples are illustrated in the figure below.

asa
& [110]
—
>a; [o11]
[011]

In three-dimensional lattices, the orientation of a crystal plane is determined by three
non-collinear points in the plane. If each point is situated on a different crystal axis, the plane

is specified by the coordinates of the points in terms of the lattice constants a,, a,, and a,.

Another way to specify the orientation of a plane, which is more useful for structure analysis,

involves the determination of three indices, called Miller indices, according to the rule:

o Find first the intercepts of the plane on the axes in terms of lattice constants a;, a,,

and a,, irrespective of the nature (primitive or non-primitive) of the unit cell.

o Take the reciprocal of these numbers.

o If fractional, reduce these numbers to the smallest three integers, say m, n, p, with the

same ratio. The result, symbolized by (mnp) (or (mnp) if the second index, for

example, is negative), is the Miller index system of the plane.

It is obvious that the Miller index for an intercept at infinity is zero. The faces of a
cubic crystal, for example, are denoted by (100), (010), (001), (100), (010), and (001).
Moreover, the plane (200) is parallel to (100), but cuts the a, axis at a/2. If, from the point
of view of crystal symmetry, there is a set of nonparallel equivalent planes, they are
symbolized as {mnp}. For example, the set of faces of a cubic crystal is {100}. Again, for the
hexagonal lattice there are four Miller indices instead of three. Examples of Miller indices are

given in the figures below.
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L (172,1,) R (172,172,1) .

(210) (221) (131)

A A A A
(231) (001) (101) (111)

Note that the Miller indices determine not only one plane but a family of parallel
planes, since there is an infinite number of planes with the same indices, all of which cut the
coordinate axes at s/m, s/n, and s/ p, with s integer. The plane that cuts the axes at 1/m,
1/n,and 1/ p is the closest to the origin from the family of parallel planes.

Note also that the planes with Miller indices (sm,sn,sp) are parallel with the plane
(mnp), but the distance between them is s times smaller. For example, the set of planes (222)
is parallel to but twice as close as the (111) set of planes.

In cubic crystals, the plane (mnp) is perpendicular to the direction [mnp] with the same
indices, but this result cannot be extended to other crystal systems. An example is given in the

figure below.
£
{001} face
[100] .
direction a i
)

[007] direction
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Simple crystal structures

One of the most simple crystal structures and, at the same time, of general interest, is that of
NaCl (sodium chloride). It is illustrated below. The lattice is face-centered cubic, with a basis
consisting of one CI™ ion (blue) at [[000]] and a Na" ion (green) at [[1/2,1/2,1/2]]. As can be
seen from the figure below, a unit cube consists of four NaCl units, with Na* ions at positions
[[1/2,1/2,1/2]], [[0,0,1/2]]1, [[0,1/2,0]], and [[1/2,0,0]] and CI™ ions at [[000]], [[1/2,1/2,0]],
[[1/2,0,1/2]], and [[0,1/2,1/2]]. Each atom has as nearest neighbors six atoms of opposite kind.

Example of crystals with this structure and their lattice constants are given below.

: Crystal | a(A) | Crystal | a (A) | Crystal | a (A)

=9 LiF | 402 |[KBr |6.60 |MgO |4.21

. "_..- -4
'I.'I‘ll.~ LiBr 550 | AgBr |5.77 | MnO | 4.43

NaCl |5.64 | AgF 4.92 | MgS 5.20

k] e - - -q..

a
I'\'l.'l Nal 6.47 | CaSe 5.91 | PbS 5.92
halh o~ .9

KCI 6.29 | BaO 5.52 | SrTe 6.47

Another common structure is that of CsClI (other crystals with the same structure are
given in the table below). The lattice is in this case simple cubic, with a basis consisting of
one Cs" ion (red) at [[000]], and one CI” ion (green) at [[1/2,1/2,1/2]]. The number of nearest
neighbors (of opposite kind) is eight.

Crystal a (A) | Crystal | a (A) | Crystal | a (A)
AINi 2.88 | CsClI 4.12 | TICI 3.83
Cuzn (Bbrass) | 294 | CsBr |4.29 | TIBr |3.97
AgMg 328 |Csl  |457 | TN 4.20

The crystal structure of diamond (and also of Si and Ge semiconductors) is

represented below.
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Crystal a(A)
¢ |

g C (diamond) | 3.57

Si 5.43

Ge 5.66

P a-Sn (grey) | 6.49

It is a face-centered cubic (fcc) lattice with a basis consisting of two identical atoms, with
coordinates [[000]] and [[1/4,1/4,1/4]]. Alternatively, diamond can be viewed as being formed
from two interpenetrating fcc lattices, displaced by 1/4 of the volume diagonal. Since the
conventional unit cell of the fcc lattice contains 4 lattice points, it follows that the
conventional unit cell of diamond has 2x4 = 8 atoms. No primitive cell exists that contains
only one atom. In diamond, each atom has 4 nearest neighbors and 12 next nearest neighbors.
It is usually encountered in materials where the covalent bonding prevails. Note that, although
a fcc lattice, the packing fraction of the diamond structure is only 0.34.

A closely related crystal structure to that of the diamond is the cubic zinc sulfide (zinc
blende structure). It differs from diamond in that the two atoms of the basis are different (in
this case, Zn and S). The conventional unit cell contains four molecules, the Zn atoms (dark
blue in the figure below) being placed at the positions [[000]], [[0,1/2,1/2]], [[1/2,0,1/2]] and
[[1/2,1/2,0]], whereas the S atoms (green) occupy the positions [[1/4,1/4,1/4]], [[1/4,3/4,3/4]],
[[3/4,1/4,3/4]], and [[3/4,3/4,1/4]]. Each atom is surrounded by four equally distant atoms of

the opposite kind, placed in the corners of a regular tetrahedron.

Crystal a(A) | Crystal [ a (A) | Crystal | a (A)
SiC 435 | AIP 5.45 | InAs 6.04
ZnsS 541 | AlAs |5.66 |InSb 6.48
ZnSe 5.67 | GaAs |5.65 |SiC 4.35
MnS (red) | 5.60 | GaSb |6.12 | CuCl |5.41
CdSs 5.82 | GaP 545 | CuBr |5.69
CdTe 6.48 | Agl 6.47 | HgSe | 6.08
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Unlike in the diamond structure, where there is a center of inversion at the midpoint of every
line between nearest-neighbor atoms, such inversion centers are absent in the zinc blende
structure. This is an example of additional symmetry operations related to the basis of the
crystal structure.

The hexagonal close-packed (hcp) crystal structure can be obtained from the
hexagonal Bravais lattice if the basis consists of two atoms (blue and red in the figure below,
left) and if the atoms in one plane, which touch each other, also touch the atoms in adjacent
planes. The packing fraction in this case is 0.74 (as in fcc lattices), and is maximum. This
crystal structure is found in the solid state of many elements, as can be seen from the table
below. The hcp structure can be viewed as vertical arrangement of two-dimensional
hexagonal structures, such as the spherical atoms in the second layer are placed in the
depressions left in the center of every other triangle formed by the centers of the spherical
atoms in the first layer. The third layer of atoms is then placed exactly above the first, the
fourth above the second, and so on. This kind of arrangement is called ABAB... In an ideal

hcp structure, the height between the first and the third layers (the height along the ¢ axis in
the figure below) is c¢c=+/8/3a= 1.63a. Because the symmetry of the hcp lattice is

independent of the ratio c/a, in real hcp structures this ratio can take values close to, but not

exactly identical to the ideal 1.63 value (see the table below).

Crystal | a(A) | c/a | Crystal | a(A) | c/a
He 3.57 |1.63| Mg 3.21 |1.62

Be 229 | 158 | Ti 295 |1.58
Nd 3.66 | 1.61|Zr 3.23 | 1.59
Zn 266 186 |Y 3.65 | 1.57
Cd 298 |1.88|Gd 3.64 | 159

a-Co |2.61 |162|Lu 3.50 | 1.58
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If the c/a ratio differs considerably from the ideal _©—¢
1.63 value, the hexagonal structure is no longer close- (.‘__‘,
packed. This is the case of graphite, for example, which is “_
@
a non-closed-packed hexagonal structure of carbon atoms ¢

(see the figure at right), with a = 1.42A and ¢ = 3.40 A, ‘i:"_ ¢
which implies that c/a = 2.39.

The fact that the hcp structure has the same packing fraction as the fcc structure is
easily explained in the figure below. Suppose that we place the first two plane of atoms as in
the hcp structure. If the atoms in the third plane are positioned over the centers of the triangles
formed by the centers of the atoms in the first plane that have no atoms from the second plane
above them, the resulting structure is in fact a fcc. This vertical arrangement is called

ABCABC...The hcp and fcc structures differ only by the vertical arrangement (ABAB... or

ABCABC...) of hexagonal planes of atoms.

A structure closely related to hep is wurtzite, generally encountered in binary com-
pound semiconductors such as ZnS (wurtzite), ZnO, BN,
CdS, CdSe, GaN, AIN, but sometimes also in ternary
compounds such as Aly2sGagsN. In binary compounds
(see the figure at right), each element has a hcp structure,

and the crystal is formed by interpenetrating two such

structures, so that an atom in one hcp lattice is

equallydistanced from the atoms in the other hcp lattice.

The crystal structure of the elements in the periodic table is indicated in the figure
below. Note that several elements can suffer transitions from one crystalline structure to
another depending on the external conditions: temperature, pressure, etc. In the table below
dhcp stands for double hexagonal closed-packed (the height of the cell along the direction
normal to the hexagonal planes is twice that in the hcp structure)



Lattice constants of some elements that crystallize in the fcc crystal structure:

Crystal Structure

hcp
dhep

Diamant

Crystal | a (A) | Crystal | a (A) | Crystal | a (A) | Crystal | a (A) | Crystal | a (A)
Ar 5.26 | Au 4.08 | Cu 3.61 | Ni 3.52 | Pt 3.92
Ag 4.09 |Ca 558 | Kr 572 | Pb 495 | Sr 6.08
Al 405 | pCo |355 | Ne 443 | Pd 3.89 | Xe 6.2

Lattice constants of some elements that crystallize in the bcc crystal structure:

Crystal | a (A) | Crystal | a (A) | Crystal | a (A) | Crystal | a (A)
Ba 5.26 | Fe 4.08 | Mo 3.61 |RDb 3.52
Cr 409 K 5.58 | Na 572 | Ta 4.95
Cs 4.05 | Li 3.55 [ Nb 443 |V 3.92
W 6.08
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Reciprocal lattice

The concept of reciprocal lattice is directly connected with the periodicity of crystalline
materials and of their physical properties (such as charge density, electric field distribution,
etc.). Since the crystal is invariant under any translation with a Bravais lattice vector

R, = ma; +na, + pa, (1)

for any integers m, n or p, any function ¢ with the same periodicity as the crystalline lattice

must satisfy the relation
o(r)=¢p(r+R,,,), (@)

where r = (x;,x,,x;) is an arbitrary position vector with coordinates x,, x,, and x, measured
with respect to the (generally non-orthogonal) system of coordinates determined by a,, a,,

and a, . This means that
@(x1, X7, X3) = @(x; +may, X, +na,, x; + pas) 3)
or, for a function that can be expanded in a Fourier series

@(xy,x2,x3) = Y Xpli(Gyxy + Goxy + Gax3)] (4)
Gl,GZ,Gg

it follows that, for any m, n, and p,
exp(imGia;) =1, exp(inGya,) =1, exp(ipGsaz)=1. (5)
Thus, G;, withi=1, 2, 3, can only take discrete values

Gi =27ZS‘I-/CII-, (6)

and (4) can be rewritten as
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p(r)= 2 ¢k exp(iG-r) (7)
51,852,853

where

G = Slbl + S2b2 + S3b3 (8)

is a vector in a coordinate system defined by the vectors b,, i = 1,2,3, such that
b,-a;, =270,;. ©)

Similar to the Bravais lattices that are constructed starting with the primitive vectors «;, one
can define a reciprocal lattice in terms of the primitive vectors b,, such that G in (8) are

points in the reciprocal lattice. A reciprocal lattice can only be defined with respect to a given
direct lattice. As demonstrated in the following, the G vectors have dimensions (and meaning
of) wavevectors related to plane waves with the periodicity of the direct lattice.

If the vectors a, are chosen and the volume of the primitive cell in the direct space is

Q= (a; xay)-asz |, the vectors b, can be chosen as

b, =(2r1Q)(a,xa;), b,=02r/Q)(asxa,), by, =02r/Q)(a,*xa,). (10)

It follows then that the volume of the primitive cell of the reciprocal lattice is given by

Qe =| by - (b xb3) |= (27)° 1 Q2. (11)

Examples of direct and corresponding reciprocal lattices in two dimensions are given in the

figures below.

d m/d
e, ‘ |*—v e, —
o /L p /L N
a, T T b
© O O—, e,
a /L ’L b
T 1T
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For a, =d(x—-y), a, =d(x+y), the vectors of the reciprocal lattice are determined from

condition (9), and are foundto be b, = (z/d)(x—y), b, =(x/d)(x+y).

m'd

When x and y are not orthogonal, but x-y =& (see the figure above), for a, =dx—cy and

a, = dx +cy, we obtain (please check!)

c+de d+ce c—de d—ce
cd(l-¢&°) cd(l—¢&°)

=7 X—7 , b, =
T ed-g?) di-2)° 7’

In three dimensions, the reciprocal lattices for the Bravais lattices in the cubic system

are summarized in the table below

Real space Reciprocal space
Lattice Lattice constant Lattice Lattice constant
SC a — 1 SC 27la
BCC a R FCC Adrla
FCC a BCC Adrla

The reciprocal lattice of a cubic lattice is also cubic since, in this case, if x, y, z are orthogonal
vectors of unit length, a,= ax, a,= ay, a;= az and Q=4>, from (10) it follows that
b, =2xla)x, b,=2xla)y, by =(2x/a)z, i.e. the reciprocal lattice is simple cubic with a
lattice constant 27 /a.

Analogously, the reciprocal lattice to the bcc lattice with (see the first course)
a,=(al2)(x+y-2), a,=(al2)(~x+y+27), a;=(al2)(x—y+z), and Q=4/2 has
primitive vectors b, = (2z/a)(x+y), b, =2x/la)(y+z), by =(2x/a)(z+x), i.e. is a fcc
lattice with a volume (of the primitive unit cell) in reciprocal state of Q . =2(27/4)?,

whereas the reciprocal lattice of the fcc lattice, with a, =(a/2)(x+y), a, =(al2)(y+3z),
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a,=(al2)(z+x),and Q=4a>/4 is a bee lattice with Q,,, = 4(27/a)® and primitive vectors
b=02rla)(x+y-2z), b, =2xla)(-x+y+2z), by=2x/a)(x—y+7z). In both cases the

cubic structure of the reciprocal lattice has a lattice constant of 47 /a.
Observation: The reciprocal lattice of a reciprocal lattice is the direct lattice.
Because the product of a primitive Bravais lattice vector and of a primitive vector of the

reciprocal cell is an integer multiple of 2, i.e. that

G, R, =27x(mh+nk+ pl), (12)

mnp

for all integers m, n, p and A, k, [, it follows that exp(iG - R) =1 for any vector R in the Bravais
lattice and any vector G in the reciprocal lattice. This implies that the function exp(iG - r) has
the same periodicity as the crystal because exp[iG-(r+ R)]=exp(iG-r)exp(iG - R) =

exp(iG - r) . As a consequence,
[, exp(iG-r)dV (13)

is independent of the choice of the cell and a translation with an arbitrary vector d should not

change the value of the integral. More precisely, if

[ ,expliG - (r+d))dV = [  exp(iG -r)dV (14)

then [exp(iG - d) —1][

cell

exp(iG - r)dV =0, from which it follows that
[, exp(iG - r)dV = Qb (15)

and that the set of functions exp(iG -r) form a complete, orthonormal basis for any periodic

function which has the same periodicity as the crystal, i.e. which can be written as

o(r) = %% exp(iG-r). (16)
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If the formula above is regarded as a Fourier transformation of the periodic function ¢, the
coefficients ¢, can be retrieved by performing an inverse Fourier transformation. More

precisely, since

[, 0(r)exp(=iG"r)dV = % 96 [, exp(iG - r)exp(—iG"r)dV

. . 7)
=2. % Le,[ expli(G—G')-rldV = %wGQé‘GG'
G
it follows that
Vg = Q_l.fcdl o(r)exp(-iG-r)dV . (18)
Relations between the direct and reciprocal lattices
One geometrical property that can be easily shown is that the reciprocal lattice vector
G,,, =mb, +nb, + pb, (19)

is perpendicular to the plane (actually, to the set of parallel planes) with Miller indices (mnp) in

the Bravais lattice. The closest plane to the origin from the set of planes (mnp) cuts the a;
coordinate axes at a, /m, a,/n,and a;/ p, respectively.

To show that (mnp) is perpendicular to G, it is sufficient to demonstrate that G, is

mnp

perpendicular to two non-collinear vectors in the (mnp) plane, which can be chosen as

u=a,ln—a;lm, v=as;/p—alm, (20)

and satisfy, indeed, the relations

because of (9). Then, it follows that the normal to the (mnp) plane that passes through the

origin can be expressed as

nmnp = Gmnp / | Gmnp | . (22)



Reciprocal lattice 6

az

a1/m

A consequence of this result is that the distance between two consecutive planes with
the same Miller indices (mnp) is inversely proportional to the modulus of G,,,. Since we can
always draw a plane from the (mnp) family through the origin, the distance between two
successive planes is equal to the distance between the origin and the closest plane to origin
from the (mnp) family. This distance is obtained by calculating the projection on the normal to
the (mnp), ie.on n,,, =G, /|G, |, of any of the vectors a,/m, a,/n, or a;/p. Using

(22) it is found that

dppp =M-—=R-—==n-—= . (23)

So,

27

d

(24)

" \/mzbl2 +n°bZ + p°bZ +2mn(b, -b,) + 2np(b, - by) + 2 pm(b, - b,) .
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As already pointed out in the discussion about Miller indices, the distance between any
two planes in the family (sm,sn,sp), is s times smaller than between any two planes in the
family (mnp). The two families/sets of planes are parallel.

In particular, for the simple, body-centered and face-centered cubic Bravais lattices
with the primitive translation vectors given in the Crystal Structure section of the course, the

distance between two consecutive planes with the same Miller indices is, respectively,

a

dpp = , (252)
Y JmPen? + p?

dls = 2 , (25b)
" \/(n+p)2+(p+m)2+(m+n)2
ee a

drinp = (25C)

\/(n+p—m)2+(p+m—n)2+(m+n—p)2

Due to the form of (7), the vectors G of the reciprocal lattice can be understood as wavevectors

of plane waves with the periodicity of the lattice and wavelengths 2z /|G |, similar to wave-
vectors in optics that are perpendicular to wavefronts and have dimensions related to the

wavelength Aas 27/ 4.

The first Brillouin zone

Analogous to the Wigner-Seitz cell in direct lattices, one can define a primitive unit cell in the
reciprocal lattice that has the same symmetry as this lattice. This primitive unit cell is known as
the first Brillouin zone. The construction of the first Brillouin zone is similar to that of the
Wigner-Seitz cell, i.e. we draw lines to connect a given lattice point in the reciprocal lattice to
all nearby lattice points, and then draw new lines (or planes, in three-dimensional lattices) at
the mid point and normal to the first set of lines. These lines (planes) are called Bragg planes
since (as we will see later) all & vectors that finish on these surfaces satisfy the Bragg
condition. The first Brillouin zone is then the area (volume) in reciprocal space that can be
reached from the origin, without crossing any Bragg planes. Higher-order Brillouin zones, say
the »™ Brillouin zone, are then defined as the area (volume) in reciprocal space that can be
reached from the origin by crossing exactly n—1 Bragg planes. The construction of the first
(light blue), second (light brown) and third (dark blue) Brillouin zones for a two-dimensional
lattice is illustrated in the figure below. The Bragg planes enclosing the »™ Brillouin zone

correspond to the ™ order X-ray diffraction.
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Although higher order Brillouin zones are fragmented, the fragments, if translated, look like
the first Brillouin zone. This process is called reduced zone scheme. All Brillouin zones,

irrespective of the order, have the same volume.

The higher-order Brillouin zones for a two-dimensional square lattice are illustrated in the

figure below.

N
5}
95

U

-2

L
—_

As for Wigner-Seitz cells, the faces of the first Brillouin zone satisfy the relation

k-G = G|* /2, where |G| is the distance to the nearest neighbor in the reciprocal space. This

relation can be rewritten as G*>—2k-G =0 or, since the equation is equivalent to the
replacement of G with —G, we obtain (k+G)? =k?, i.e. the first Brillouin zone is the

intersection of spheres with the same radius centered at nearest neighbor points in the

reciprocal lattice.
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In particular, since the reciprocal lattice of the bcc lattice is a fcc lattice, the first
Brillouin zone of the bcc lattice (see the polyhedron in the figure a below) is the Wigner-Seitz
cell of the fcc. The reverse is also true: the first Brillouin zone of a fcc lattice (the truncated

octahedron/rhombododecahedron in figure b below) is the Wigner-Seitz cell of the bcc lattice.

For certain Bravais lattice, in particular bcc, fcc and hexagonal, the points of highest
symmetry in the reciprocal lattice are labeled with certain letters. The center of the Brillouin
zone is in all cases denoted by I'. Other symmetry points are denoted as follows (see also

figures):

sc lattice: M — center of an edge
R — corner point
X — center of a face
bcc lattice:  H — corner point joining four edges
N — center of a face
P — corner point joining three edges
fcc lattice: K —middle of an edge joining two hexagonal faces
L — center of a hexagonal face
U — middle of an edge joining a hexagonal and a square face
W — corner point

X — center of a square face
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hexagonal lattice:
A — center of a hexagonal face
H — corner point
K — middle of an edge joining two rectangular faces
L — middle of an edge joining a hexagonal and a rectangular face

M — center of a rectangular face

Dispersion relations of electrons and phonons for different crystal directions use this labeling
(see the figures below), the labels indicating the direction but also the symmetry of the crystal,

since different labels are used for different symmetries.

NN 7 %
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X-ray diffraction on crystalline structures

The direct observation of the periodicity of atoms in a crystalline material relies on the X-ray
or particle (electron or neutron) diffraction/scattering on these spatially periodic structures,
since the wavelength of the incident beam is in these cases comparable to the typical
interatomic distance of a few A. Optical diffraction is not suitable for this purpose since the
wavelength of photons is much too long (about 1 um) in comparison to the lattice constant (a
few Angstroms). In a diffraction experiment, both the X-ray or particle source and the detector
are placed in vacuum and sufficiently far away from the sample such that, for monochromatic
radiation, the incident and outgoing X-ray or particle beams can be approximated by plane
waves. The X-rays can be used in either transmission or reflection configurations. The
diffraction picture offers information regarding the symmetry of the crystal along a certain
axis. In particular, the positions of the spots give information about the lattice and the intensity

analysis reveal the composition of the basis.

detacior M

crystal é (ECraan)

The X-rays penetrate deeply in the material, so that many layers contribute to the
reflected intensity and the diffracted peak intensities are very sharp (in angular distribution). To
obtain sharp intensity peaks of the scattered radiation, the X-rays should be specularly reflected

by the atoms in one plane.
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For X-rays, the wavelength is determined from the relation E=hv=hcl/A or
A =hel E, which equals a few A if E is of the order of few keV. In fact, A(A) = 12.4/E(keV).
X-rays are scattered mostly by the electronic shells of atoms in a solid, since the nuclei are too
heavy to respond.

Electrons can also have de Broglie wavelengths similar to the lattice constants of

crystals. In this case E = (h/ A)?/2m, and for an electron energy E of 6 eV, the corresponding

wavelength 1 =#h/~+2mE is about 5 A. Actually, if the kinetic energy of the electrons is

acquired in an acceleration voltage potential U, such that £ = eU, one has A(A) =
12.28/[U(V)]Y2. For neutron diffraction we have to consider a similar relation, except that the
electron mass m has to be replaced by the neutron mass M. Then, A(A) = 0.28/[E(eV)]*.

When a wave interacts with the crystal, the plane wave is scattered by the atoms in the
crystal, each atom acting like a point source (Huygens’ principle). Because a crystal structure
consists of a lattice and a basis, the X-ray diffraction is a convolution of diffraction by the
lattice points and diffraction by the basis. Generally, the latter term modulates the diffraction
by the lattice points. In particular, if each lattice point acts as a coherent point source, each
lattice plane acts as a mirror.

The X-rays scattered by all atoms in the crystalline lattice interfere and the problem is
to determine the Bravais lattice (including the lattice constants) and the basis from the
interference patterns. The wave that is diffracted in a certain direction is a sum of the waves
scattered by all atoms. Higher diffraction intensities will be observed along the directions of

constructive interference, which are determined by the crystal structure itself.

The diffraction of X-rays by crystals is elastic, the X-rays having the same frequency (and
wavelength) before and after the reflection. The path difference between two consecutive

planes separated by d is 2-AB =2d sin @ . First-order constructive interference occurs if
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2dsinf=1, (1)

condition known as Bragg’s law.

The Bragg law is a consequence of the periodicity of the crystal structure and holds
only if A<2d. This is the reason why the optical radiation is not suitable to detect the
crystalline structure, but only X-rays and electron or neutron beams can perform this task.

Higher order diffraction processes are also possible. The Bragg relation determines,
through the angle 6, the directions of maximum intensity. These directions are identified as
high-intensity points on the detection screen, the position of which reveal the crystal structure.
For example, if the sample has a cubic crystal structure oriented such that the direction [111]
(the diagonal of the cube) is parallel to the incident beam, the symmetry of the points on the

detector screen will reveal a C; symmetry axis. On the contrary, if the diffraction pattern has a
C, symmetry axis, the crystal is hexagonal, if it has a C, symmetry axis it is a tetragonal
crystal, whereas it is cubic if it shows both a C, and a C; symmetry axis.

The Bragg formula says nothing about the intensity and width of the X-ray diffraction
peaks, assumes a single atom in every lattice point, and neglects both differences in scattering
from different atoms and the distribution of charge around atoms.

A closer look at the interaction between the X-rays and the crystal of volume ' reveals
that the amplitude of the scattered radiation £ (which is proportional to the amplitude of the
oscillation of the electric and magnetic fields of the total diffracted ray) is determined by the

local electron concentration n(r) = > n; exp(iG - r), which is a measure of the strength of the
G

interaction, and has the same periodicity as the crystalline lattice. The diffraction intensity
I o F|*. For elastic X-ray scattering, the phase of the outgoing beam, with wavevector &',

differs from that of the incoming beam that propagates with a wavevector &k through
exp[i(k — k') - r], so that

F = [n(r)expli(k — k') - r}dV = [ n(r)exp(~iAk - r)dV = ng [expli(G — Ak) - rldV @)

where Ak =k'-k is the scattering vector, which expresses the change in wavevector. The

result in the above integral depends on the volume of the crystal. If the crystal has length L,

and N, primitive cells in the i direction (i = 1,2,3) of an orthogonal coordinate system (if the
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crystal system is not orthogonal, a transformation of coordinates to the x=x;, y=x,, z=x;

axes should be performed), the integral along the i direction is given by

Ll .
i exp{iz—”(s,» -Ag)y }dx,- o SRR incte(s - a2)V) @

LI2 i

where s;, A&, are the components of G and Ak on the i axis and a, =L,/ N, is the lattice
constant on the same direction. The function sinc(x) = sin x/x has a maximum value for x =0,

and tends to the Dirac delta function for large x.

Therefore, in large-volume crystals scattering occurs only if
Ak =G, (4)

case in which F =Vng. (In finite-volume crystals there is a sort of “uncertainty” in the angular

range of Akaround G for which the scattering amplitude takes significant values: as the
volume decreases, the angular range increases.) The above condition suggests that X-ray
diffraction experiments reveal the reciprocal lattice of a crystal, in opposition to microscopy,
which exposes the direct lattice (if performed with high-enough resolution).

o o )
Bragg G \
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The diffraction condition Ak =k'-k=G can be rewritten as k'=k+G or
k'*=k*+G®+2k-G. In particular, the form #7k'=hk+hG of the diffraction condition
represents the momentum conservation law of the X-ray photon in the scattering process; the

crystal receives the momentum — %G . For elastic scattering | k'|=| k | and thus G® +2k -G =0,
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or k-G = G|’ /2, equation that defines the faces of the first Brillouin zone (the Bragg planes).
The geometric interpretation of this relation (see the figure above) is that constructive
interference/diffraction is the strongest on the faces of the first Brillouin zone. In other words,
the first Brillouin zone exhibits all the k£ wavevectors that can be Bragg-reflected by the crystal.

The diffraction condition is equivalent to Bragg’s law, which can be written for a

certain set of planes separated by the distance d =d,,, as 2(2z/A)sind=2~/d,,,, or

2k -G = G*, with G = mb, + nb, + pb, (for the direction of G with respect to the set of planes,

see the figure illustrating the Bragg law).

The Laue condition
The diffraction condition Ak =G can be expressed in still another way: if we multiply both
terms of this relation with the primitive translation vectors of the direct lattice, we obtain the

Laue conditions

where s, are integers. The Laue equations have a simple geometrical interpretation: Ak lies
simultaneously on a cone about a,, a,, and a,, i.e. lies at the common line of intersection of

three cones. This condition is quite difficult to satisfy in practice. Moreover, in analogy to
optical diffraction experiments, the Laue condition can be viewed as a condition of
constructive interference between waves diffracted by two atoms separated by a primitive
translation vector or, by extension, between waves diffracted by all atoms in the crystal. At
Bragg reflection, the radiation scattered by all atoms arrives in phase at the detector, and

intensity peaks are obtained.

The Ewald sphere

The direction of interference peaks can be easily determined also via a simple geometrical
construction suggested by Ewald. Namely, one constructs a sphere (a circle in two dimensions
— see the red circle in the figure above) around a point O in the reciprocal lattice chosen such
that the incident wavevector with O as origin, ends on an arbitrary lattice point A. The origin of
the Ewald sphere (or circle) is not necessary a lattice point.
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The radius of the sphere (circle) is the wavenumber of the incident (and outgoing) radiation

k =|k|=| k'|. A maximum intensity is found around a direction k' if and only if the Ewald

sphere (circle) passes through another point B of the reciprocal lattice. The direction k' is
determined by the origin O of the Ewald sphere and this lattice point on the surface
(circumference), which is separated from the tip of £ (from A) by a reciprocal lattice vector. It
Is possible that for certain incidence angles and wavelengths of the X-rays no such preferential
direction k' exists.

Therefore, to obtain peaks in the scattered intensity it is in general necessary to vary
either the wavelength or the incidence angle of the incoming X-rays such that a sufficient
number of reciprocal lattice points find themselves on the Ewald sphere (circle), in order to
determine unambiguously the crystal structure. In the first method, called Laue method, the

radius of the Ewald sphere (circle) is varied continuously (see, for example, the green circle in
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the figure above), while in the second method, called the rotating crystal method or Debye-
Scherrer-Hull method, the Ewald sphere (circle) is rotated around the original lattice point with
respect to which the Ewald sphere (circle) was constructed. The result is represented with the
dark blue circle in the figure above.

In another diffraction method (the Debye-Scherrer method) polycrystalline samples are
used, which are either fixed or rotate around an axis. In this case, the incident beam is scattered
by only those crystallites (randomly oriented) with planes that satisfy the Bragg condition.
Because the sample contains crystallites with all orientations, the diffraction pattern on the

screen is no longer formed from discrete points, but from concentric circles.

The influence of the basis on the scattered amplitude

If the Laue/diffraction condition Ak = G is satisfied, an explicit account of the basis influence
implies that the assumption of point/spherical sources at the lattice points have to be modified.

In this case, we have found that

F =Vng = N[ _ n(r)exp(-iG-r)dV = NS, (6)
where ng = Q™[  n(r)exp(-iG-r)dV , N is the total number of lattice points, and
S = Lenn(r) exp(—iG - r)dV @)

is called the structure factor. It is defined as an integral over a single cell, with » = 0 at one

corner. If there is only one lattice point in the basis and the electron distribution n(r) = &6(r),
Sq =1.

If there are s atoms in the basis at positions r;, j = 1,2,..,s, the total electron density can
be expressed as a superposition of electron concentration functions », at each atom ; in the

basis, so that the structure factor is expressed as integrals over the s atoms of a cell:

S¢ =] {Zn (- rj)}exp(—iG r)dV = | {Zn ; (p)}exp(—iG - p)exp(—iG -r;)dV
=1 =1
j / | (8)
= exp(~iG - ) n;(p)exp(=iG - p)dV =3 f;exp(=iG - r))
j=1 j=1
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where p=r—r, and f, = jnj (p)exp(—iG - p)dV is the atomic form factor, which depends

only on the type of element that the atom belongs to. The integral has to be taken over the
electron concentration associated with a single atom.

The atomic form factor is a measure of the scattering power of the jth atom in the unit
cell. If the charge distribution has a spherical symmetry, one can use spherical coordinates

chosen such that the polar direction is along G. In this case, dV =2zp’singdpde,
G-p=G|-|p|-cosp=Gpcose, where ¢ is the angle between p and G, and the atomic form

factor becomes
fi= 2ﬂjnj (p)pzdpjexp(—iGp cosg)singde = 47rjnj (p)p*(SinGpl Gp)dp . 9)
0 0 0

The atomic form factor decreases rapidly with the distance and, in the limit p — 0, when

sinGpl/Gp — 0,

£, > axfn,(p)pidp =2, (10)

where Z is the number of electrons in an atom. Also, when G = Ak =0 (for a diffracted ray

collinear with the incident ray), the phase difference vanishes and again f,(G =0)=Z.

f can be viewed as the ratio of the radiation amplitude scattered by the electron
distribution in an atom to that scattered by one electron localized at the same point as the atom.
The overall electron distribution in a solid, as obtained from X-ray diffraction experiments, is
almost the same as for free atoms, i.e. atoms in which the outermost (valence) electrons are not
redistributed in forming the solid. X-ray diffraction experiments are thus not very sensitive to

small redistributions of electrons.

Example: consider a bcc lattice as a sc lattice with a basis consisting of two atoms at [[000]]
and [[1/2,1/2,1/2]]. The primitive lattice vectors for the Bravais and the reciprocal lattices are
in this case a,= ax, a,= ay, a;= az, and b, =(2x/a)x, b, =(27/a)y, b, =(27/a)z,
respectively. The diffraction peak of the sc lattice that is labeled by (mnp) corresponds to

G = mb, + nb, + pb, = (271 a)(mx + ny + pz) and for this diffraction peak
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S, =3 £, eXPUG 1)) = £, expli(2] a)(mx + ny + pz) - 0]

+ £, expli(2 ] a)(mx + ny + pz) - (a] 2)(x + y+ 2)] (11)
= fi+ frexpliz(m+n+ p)]

The bcc diffraction intensity is given by

Imnp OCl Smnp |2= ﬁ.z +f22 + 2Re[f;l.f2 exp[lﬂ-(m tn+ p)]] ' (12)

If fi=/fa=r1,

47% ifm+n+ p=even

. (13)
0, ifm+n+p=odd

]mnp oc 2f2[1+ eXp[lﬂ'(m+n+p)]] :{

So, for the bcc structure with the same type of atoms, the (mnp) diffraction peaks of the sc

lattice disappear whenever m+n+ p is an odd integer. In particular, it disappears for a (100)

reflection (see the figure below) since the phase difference between successive planes is 7z, and
the reflected amplitudes from two adjacent planes are out-of-phase/destructive interference

occurs.

Observation: for a sc lattice with one atom in the basis, the diffraction intensity would have

been the same, irrespective of the parity (even or odd) of m +n+ p. This example illustrates

the effect of the basis on the diffraction intensity.



Crystal binding

The stability of solid state materials is assured by the existing interactions (attractive and
repulsive) between the atoms in the crystal. The crystal itself is definitely more stable than the
collection of the constituent atoms. This means that there exist attractive interatomic forces
and that the energy of the crystal is lower than the energy of the free atoms. On the other
hand, repulsive forces must exist at small distance in order to prevent the collapse of the
material. One measure of the strength of the interatomic forces is the so-called cohesive
energy of the crystal, defined as the difference between the energy of free atoms and the
crystal energy. Similarly, the cohesive energy per atom U, is defined as the ratio between the
cohesive energy of the crystal and the number of atoms. Typical values of the cohesive energy
per atom range from 1 to 10 eV/atom, with the exception of inert gases, where the cohesive
energy is about 0.1 eV/atom. In particular, the cohesive energy determines the melting

temperature of solid state materials. Crystals with |U, | < 0.5 eV have weak crystal bindings,

while the others are characterized by strong crystal bindings.

U

_ repulsive energy

|
cohesive energy I .
|

Up e

/! .
/T attractive energy
f

As shown in the figure above, the potential/binding energy U, which describes the interaction
between two atoms, approach 0 (or infinity) for an interatomic distance R — o (or to 0), and
has a minimum at a certain distance R =R,. It is composed of an attractive energy part,
dominant at R > R,, and a repulsive energy part that prevails at R < R,. Then, the most stable
state of the system, which occurs at the lowest possible energy, is characterized by the

cohesive energy U,, the corresponding interatomic distance, R,, being known as the
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equilibrium interatomic distance. The last parameter has typical values of 2-3 A, which
implies that the stability of the crystal is determined by short-range forces.

The interatomic force, defined as

F(R) = -0U /R, (1)

is negative (attractive) for R > R,, and positive (repulsive) for R <R,. The attractive and

repulsive forces, which have different origins, cancel each other at the equilibrium interatomic
distance.

The general form of the potential energy is

U(r):in—im, with n>m. (@)
r'or

The repulsive force between atoms in the solid has the same origin in all crystals:
Pauli exclusion principle, which forbids two electrons to occupy the same orbital (the same
quantum state). The repulsive force is characterized (see the formula above) by the power-law

expression U =A/r", with n > 6 or, sometimes, by the exponential expression

U = Zexp(-r/ p), where A and p are empirical constants that can be determined from the

lattice parameters and the compressibility of the material. Which expression is better suited to
describe the repulsive force depends on which one better fits with experimental values. The
repulsive potential is short-ranged and thus it is effective only for nearest neighbors.

The attractive forces create bonds between atoms/molecules in the solid, which
guarantee the crystal stability and are of different types depending on the crystal. Only the
outer (valence) electrons participate in the bonding. There are several types of bonding,
depending on the mechanism responsible for crystal cohesion: ionic, covalent and metallic,
which give rise to strong crystal bindings, and hydrogen bonding and van der Waals

interaction, which determine weak crystal bindings.

Crystal binding in inert/noble gases. Van der Waals-London interaction

The crystals of inert gases have low cohesion energy and melting temperature, and high
ionization energies. They are the simplest crystals, with an electron distribution close to that
of free atoms. From an electrical point of view they are isolators, and from an optical point of

view, are transparent in the visible domain. The weak binding between the constituent atoms
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favors compact crystalline structures, in particular fcc Bravais lattices with one atom in the
basis (the only exceptions are He® and He*, which crystallize in the hcp crystal structure).
Individual atoms of Ne, Ar, Kr, or Xe have completely occupied external shells, with a
spherically symmetric electronic charge distribution. In crystals, the presence of other atoms
induces a redistribution of the electric charge and a perturbation of the spherical charge
symmetry that can be described within the model of fluctuating dipoles. Coulomb attraction
can occur between two neutral spheres, as long as their internal charges polarize the spheres.
In a classical formalism (valid since electrostatic forces have a long range), this model

assumes that the movement of the electron in atom 1 induces an instantaneous dipole moment

p, which generates an electric field

“oulomb attraction

E(rlz):_i(&_‘?’(pl'rlz) rlzj 3)

5
rlZ r12

at the position of atom 2 separated from atom 1 through a distance r,, =| r,, |. This electric
field induces a fluctuating dipole in atom 2 (the distance between the atoms as well as the

magnitude and direction of p, fluctuate in time), with a moment

p, =aE(r,), 4)

where « is the atomic polarizability. The energy of the dipole-dipole interaction between the

two fluctuating dipoles is

Uattr(rlz) :_p2 . E(rlz) — 47::-'8 (pl . p2 _3(p1 'rlz)(pz . r12)], (5)

3 5
r12 rlZ



Crystal binding 4

and its minimum value is attained when p, || p, || ., case in which, replacing the value of

p, in (5) with its expression in (4), we get

- ©)

6 6
I I

2
1\ 4ap! C
U attr,min (rlz) = _( ) &

4re,

This van der Waals (or London) interaction is the dominant attractive interaction in noble

gases. The higher-order contributions of the dipole-quadrupole and quadrupole-quadrupole

interactions are characterized by the respective potentials —C,/r,, and C,/r5, and do not

contribute significantly to the cohesion energy of the noble gases crystals. The same —C/r,)

dependence of the energy is recovered in a quantum treatment, in the second-order
perturbation theory.
Assuming a power-law expression for the repulsive forces with n = 12, the interaction

potential is given by the Lenard-Jones formula

U(n,) = 4{[%} —[rij ] (7)

where the parameters yand o are determined from X-ray and cohesion energy experiments.
The interaction energy of atom 1 (atom i, in general) with all other atoms in the crystal

is then

v, :;ua,,):;@[@ [EJ } ®)

and the energy of the crystal composed of N atoms is U, =(N/2)U;. For a periodic

arrangement of atoms in the lattice, with nearest-neighbors at a distance R, r; = p;R and

o 12 o 6
Ucryst :2N7/|:Sl2(ﬁj _SS(EJ :l (9)

where
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s, =z[iJ s, =z{iJ (10)

=i\ P j=i\ Pjj

are rapid convergent series, that can be calculated after the crystalline structure is determined
by X-ray measurements. Their values are, respectively, 12.132 and 14.454 for the fcc
structure, with almost the same values for hcp structures.

The crystal energy is minimum value for the R value which is the solution of

U gryst / OR = 2Ny[12Sy, (o / R)™ —6S4(c/R)°]=0, i.e. for
Ry =0 (25;, /Se)l/6 . (11)

The ratio R, /o =1.09 for a fcc Bravais lattice, the corresponding cohesion energy per atom

(at zero temperature and pressure) being

S V' S S2
UO:Ucryst(RO)/N:27/[Slz( 6] _56( : j]=7 e =-8.6y . (12)

251 251,

Quantum corrections reduce the binding energy above by 28%, 10%, 6%, and 4% for Ne, Ar,
Kr, and Xe, respectively. The quantum corrections are more important for inert gas crystals
with smaller equilibrium interatomic distance (smaller lattice constants).

The above model determines also the compressibility modulus of noble gases with
volume V (and volume per atom v=V /N = R® /\/E), defined at low temperatures as

12
op RV cryst o°U Y Se i Y
BO :—V(a—vj :V£ 6V2 =V W :4—3812 S_ = 75—3 (13)
T=const R=R, R=Rg o 12 o

Ne Ar Kr Xe

Ro (A) 305 |374 |4 4.34

Uo (eV) -0.024 | -0.085 | -0.118 | -0.171

Tieit (K) 24 84 117 161

7 (€V) 0.031 | 001 |0.014 |0.02

o (R) 274 | 3.4 3.05 |[3.98

By(10°Pa) | 145 |295 |3.48 |37
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lonic binding

The ionic binding is found in ionic crystals formed from positive and negative ions, for
example Na" and CI™ in NaCl. In this bonding type, electrons are transferred from the low
electronegative atom, which becomes a positive ion, to the high electronegative atom, which

is transformed into a negative ion (see the figure below).

The electronegativity is the average of the first ionization energy and the electron affinity. It
measures the ability of an atom or molecule to attract electrons in the context of a chemical
bond. In NaCl the ionization energy (actually the first ionization energy E;, which is the
energy required to move an electron from a neutral isolated atom to form an ion with one
positive charge: Na + E; —Na’ + ) of Na is 5.14 eV and the electron affinity (the energy E,
absorbed when an electron is added to a neutral isolated atom to form an ion with one
negative charge: Cl + e — CI™ + E,) of Cl is 3.56 eV. The electron affinity is negative if
energy is released in the process. For most elements the electron affinity is negative, but it
takes positive values in atoms with a complete shell. The net energy cost of the ionic bonding
(i.e. the difference between the energy of the ions and that of the two atoms) is then E;— E, =
5.14 eV — 3.56 eV = 1.58 eV per pair of ions, without taking into account the Coulomb
energy between the ions.

In general, the electronegativity increases with the group number in the periodic
element table, from the first to the seventh group (elements in the eight group have complete
shells). Depending on the difference in electronegativity between two atoms, the bonding
between them is

o lonic (for large difference). Example: Na-Cl.

o Polar covalent bonding (for moderate difference). Example: H-O.

o Covalent bonding (for small difference). Examples: C-O, O-O
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In ionic crystals the bonding is achieved by the long-range electrostatic force and so, a
classical treatment is meaningful. The electronic configuration of the ions is similar to that of
inert/noble gases, i.e. the electronic charge has a spherical symmetry, which is only slightly
perturbed in crystal. The perturbations are localized in the regions in which the ions are
closer. In particular, in NaCl the electronic configurations of the Na" and CI™ ions are similar
to that of noble gases Ne™® (1s%2s%2p®) and Ar'® (1s%2522p®3s3p°®), respectively (see below).

= —  =Ne

In ionic crystals, the cohesion energy U, is no longer equal to the difference between
the attractive and the repulsive potentials that act upon an ion at the equilibrium position,

denoted in this case by U, (and which still determines the echilibrium interatomic
distance), but has a correction term equal to E, — E;, such that the difference between the

energy of free atoms and of the ions in the crystal (which defines the cohesion energy) is

Uy =Uin + E5 —E; . In other words,

Na+CI —) Na+CI_ +U0 +Ea _Ei
(S

crystal

and U i, + E; — E; is the energy released per molecule when the neutral constituents form a
ionic crystal..

The Coulomb force between one positive Na ion and one negative Cl ion, separated by
a distance R is given by

eZ

" 47g,R?

(14)

I:Coulomb =

with R = 2.81 A the nearest-neighbor distance in NaCl, so that the respective attractive
potential energy,
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u Coul =7~ 7, 5 (15)

equals —5.12 eV per pair. It follows then that the net energy gain in the ionic bonding, is
5.12 eV — 1.58 eV = 3.54 eV per pair of ions.
The electrostatic energy gain per NaCl molecule in a fcc crystal is obtained by adding

different contributions:

2

o that of the (opposite type) 6 nearest-neighbors of a certain ion, U, = —6 ¢ ,
4reyR
2
o that of the 12 second nearest-neighbors (of the same ion type), U, = 126—,
472'80R\/§
2
o that of the 8 third nearest neighbors of opposite type, U, = —89— , and so on.
47ngR\/§
The result is
2 2
+
Uion=—e—[6—£+i— ,,,,, ]z_ ¢ v (16)
4re,R J2 43 AreoR 1= Py
e’ e’
The series above converge eventually to U,,, = -1.748 =-M , Where M
4re,R 4re,R

is the Madelung constant, which takes specific values for each crystal structure. For other
crystal structures: CsCl, zinc blende, and wurtzite, we have, respectively, M = 1.763, 1.638
and 1.641. (If the series is slowly convergent or even divergent, the terms in the sum are
rearranged such that the terms corresponding to each cell cancel each other — the cell remains
neutral in charge.) The total attractive energy in a NaCl crystal with N ion pairs is given by

U, =2U,,, xN/2, where the factor 2 in the numerator accounts for the fact that there are

two types of ions: Na and ClI, and the factor 2 in the denominator is introduced in order to
count every ion pair only once. For NaCl, U = 861 kJ/mol (experiments give 776 kJ/mol).
The discrepancy (of about 10%) between the experimental and theoretical values is explained
by the existence of the (non-classical) repulsive forces.

Similarly, if we add up the repulsive potential felt by an atom from all others (the

exponential form is used now), we obtain
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Uy, = S Aexp(—r; / p) = 2Aexp(-R/ p) (17)

j#i

where we consider that o << R and z is the number of nearest neighbors. The interaction

energy of the whole crystal, which consists of N ion pairs/molecules is

Me?
Ucryst(R) =N| zlexp(-R/ p) - ' (18)
4re,R

and its minimum value per molecule,

U 2
Umin _ cryst,0 __ e“M 1_£ ' (19)
N 47[80R0 RO

occurs for the equilibrium interatomic distance R, found from the condition dU . /dR =

—(zA1 p)exp(-R/ p) + Me? [(4ze,R?) =0. The first term (the Madelung term) in (19),
which expresses the electrostatic contribution of the interactions, is dominant since p << R,.

With the same definition as above, the compressibility modulus takes now the form

1 dU
9fR, dR’

0

2
__eM (R, 0
367e, Ry \ p

R=Rg

where f =v/R?® is the ratio between the volume per particle v and the third power of the

nearest-neighbor distance. f = 8/3+/3, 2 and 16/3+/3 for CsCl, NaCl, and zinc blende,

respectively.

LiF | LiCl | NaF | NaCl | KF KCl | RbF | RbCI

Ro (A) 201 |256 (231 |282 |267 |3.15 |282 |3.29

Uo (eV) -10.5 | -845|-931 |-7.86 | -8.23 | -7.1 |-7.85 | -6.84

Bo (10°Pa) [ 6.71 |298 [465 |24 [3.05 [1.75 [262 |1.56

A(10°eV) |3.08 |51 |[6.24 |10.93|13.63 |21.35|18.54 | 33.24

p(A) 0.2910.33 | 0.29 | 0.321 | 0.298 | 0.326 | 0.301 | 0.323
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Covalent bonding

The covalent bonding forms in molecules composed of identical particles, for example
hydrogen. In this case two atoms form a (homopolar) bond by sharing a pair of electrons (one
from each atom, with opposite spins). Most atoms can form more than one covalent bond. For
example, C has four outer electrons (of 2sp® type) and thus can form 4 covalent bonds. The
covalent bond is highly directional and different bonds repel each other. Therefore, the
corresponding crystal has generally a low packing ratio. For example, C and Si can have
diamond structure, with atoms joined to 4 nearest neighbors at tetrahedral angles; this
structure has a packing ratio of only 0.34 compared to 0.74 for close-packed structures. The
electrons in covalent bonds are strongly localized along the bond, so that the crystals are
semiconductors or isolators, with not very good electrical conductivity.

To describe the covalent bonding in hydrogen, we introduce the normalized atomic
orbitals 1s for the j (j = 1,2) electron that can belong to either atom A or B as w.+® (), so that
the normalized wavefunction of the total system can be either symmetric (labeled with +) or

antisymmetric (labeled with —)

£ cat c)
W= [U420+ S5) v Oy )+ Qv (] (21a) s R
Y= [120-SE)IE Wy () -pE Wwi (] (21b) L C """ U C

where  S,g =[(ws(1) v (2)dr is the overlap integral. Note that the symmetric

wavefunction for ionic crystals can be expressed as ¥, o [ * Dy *(2) +w® Qw® (2)].

U
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The symmetric wavefunction (also called singlet) corresponds to two antiparallel spin,
with quantum number S = 0 of the operator S?(with S the total spin), while the
antisymmetric wavefunction (also called triplet) corresponds to parallel spins, i.e. S = 1 (with
the spin projection quantum number ms = -1, 0, and 1; there are three antisymmetric
wavefunctions!). The form of the wavefunctions above is determined from the condition that
the total wave function for fermions (including spin) must be antisymmetric upon particle
exchange.

The energy eigenvalues are represented above as a function of the distance between
the atoms. A bound state can exist in the singlet state, with E. = —3.14 eV if the covalent
bonding forms between H atoms, i.e. the strongest binding occurs if the spins of the two

electrons are antiparallel.

atom A ?E+| atom B

To characterize the crystalline structure of diamond one must generalize the previous
formula in order to incorporate the p atomic orbitals. Indeed, the last occupied orbitals of
these materials are: C(2s%2p?), Si(3s*3p?), and Ge(4s°4p?). When both s and p-type orbitals are
involved, they hybridize (see figures below). [The s atomic orbitals have quantum numbers n
=1,2,3... (principal quantum number), I = 0 (orbital quantum number), and m = 0 (magnetic
quantum number; the projection of I). The p orbitals have n=1,23...,1=1, and m=-1,0,1.]
The s and p atomic orbitals hybridize when the energy difference between them is much

smaller than the binding energy.

z z
y y

x?/,—x
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In particular, when one s orbital with wavefunction ¥, and one p orbital, say the p,

orbital, with wavefunction ‘¥, , hybridize, the result is two linear sp orbitals (see figure

above) with wavefunctions

P =22+ ¥,,), P, =272 (P - ,). (22)
4 Zz
y sy (Y
‘ ’ “/% ’ # )
o
s Py Py 220
L - iy /—_‘

zy z.'f’
et QY

On the contrary, sp? hybrid orbitals form between one s orbital and two p orbitals, the
resulting planar structure (see figure above) having orbitals arranged in plane with an angle of
120° between them. The electrons in the hybrid orbitals are strongly localized and form o
bonds; they do not participate in electrical conduction. One p orbital remains perpendicular to
the plane, where it forms a 7 bond with other out-of-plane p orbitals from neighboring atoms;
this is the case of graphite or graphene (bidimensional crystal). The electrons in the 7 orbitals

are delocalized and participate in electrical conduction. The three hybrid orbitals are given by

¥, =32 (P +429,), (23)
¥, =372[W, - (UUN2)¥,, +4/312¥, 1, s =37V2[W, - (1/N2)¥,, —3/2¥, 1.

Similarly, the electronic configurations that forms from one s orbital and three p
orbitals is called sp*. This electronic configuration is characteristic for diamond. The angular

part of the s and p orbitals are (in polar coordinates)

¥ = (47) 72, (24)
¥, =(3/4x)?sindcosp, W, =(3/4x)?sindsing, W, =(3/4x)"?cosd
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so that the four hybrid atomic orbitals that are linear combinations of atomic orbitals form a

tetrahedron (see figure below) and are given by

Wy = 1/2)(‘Ws +F,, +¥p, +¥,)), (25a)
Wy =U/12)(Ws + ¥y, =¥, —¥p,), (25b)
Wy =@/2) (Vs -, +¥p, —¥p,), (25¢)
Wy =Q12)(Ws =¥y, -y, +'¥p,). (25d)

C, Si and Ge form crystals in which the covalent binding is dominant, the van der
Waals contribution to the cohesion energy, also encountered in crystals from a single element,
being negligible. However, in crystals with a basis composed of two atoms A and B, with n
and, respectively, 8—n valence electrons, the covalent binding is accompanied by a ionic
contribution. The resulting bond is called polar covalent bond. The ionic contribution (in
fraction) is 0.18 in SiC, 0.26 in GaSh, 0.32 in GaAs, and 0.44 in InP. Similarly, in ionic
crystals the covalent binding can also contribute to the cohesion energy, the fraction of the
ionic contribution being only 0.86 in AgCl, 0.94 in NaCl, and 0.96 in RbF. When covalent
bonding forms between different atoms, the hybrid orbitals considered above are modified, as
can be seen from the figures below.

l"s' . | H

109°28’

Is

Electronic configuration in the CH4 molecule.
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Bonding between the 1s orbitals of the H atom and the 2p, and 2p, orbitals of O atom
in H,0 (a) without, and (b) with hybridization

Covalent crystals are characterized by:

o high melting temperatures (the cohesion energy per atom is about —10 eV)
o hardness (but also friable)

o their conductivity depends strongly on temperature and impurity atoms

o high value of the dielectric constant

. generally transparent in IR, but strongly absorbent in visible and near-IR.

Note: Crystal bonds form between valence electrons, i.e. the electrons on the outer shells,
which participate in chemical reactions/determine the physical properties of the material. In

contrast, core electrons are those on inner shells.

Hydrogen binding of crystals

Because neutral hydrogen has only one electron, it should form a covalent bond with only one
other atom. However, just as oppositely charged ions are attracted to one another and can
form ionic bonds, the partial charges that exist at different atoms in polar covalent bonds can
interact with other partially charged atoms/molecules. Particularly strong polar covalent
bonds are found, for example, when a hydrogen atom bonds to extremely electronegative ions
such as O in water/ice (see the figure below, left), F (see the figure below, right), N or Cl. The
partial charges in the figure below are denoted by 8. The hydrogen bond forms between the

hydrogen atom with a strong partial positive charge and electronegative ions with strong
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partial negative charges in neighboring molecules. The binding energy is of the order of 0.1

eV. For example, the cohesion energy per molecule inice is —0.3 eV.

hydrogen bond
IIlIII
IIIIIIIIIII H
6-
hydrogen bond

The hydrogen bond is weaker than, although similar to, ionic bond since it forms

between partial charges rather than full (complete) charges. In hydrogen bonds the hydrogen
atom is the hydrogen bond donor and the electronegative ion is the hydrogen bond acceptor.
As the polar covalent binding, the hydrogen bond can be viewed as a mixture of ionic and
covalent bonding, the ionic bonding being dominant. For example, in the typical hydrogen
bond that links two H,O molecules in ice, the binding can be considered as a superposition of

three binding types:

O (covalent) H (ionic) O
O (ionic) H (ionic) O
O (ionic) H (covalent) O

In hydrogen, the proton radius is with five orders of magnitude smaller than the radius
of any other ion, and so it allows the existence of only two nearest neighbors of the proton
(more than two atoms would get in each other’s way), i.e. the hydrogen bond is directional.

Despite it is weak, the hydrogen bond is extremely important in living organisms,
which are mainly composed of water, since water as well as proteins and nucleic acids posses
a great capacity to form hydrogen bonds. In particular, the hydrogen binding occurs as intra-
molecular binding between the organic complementary bases thymine and adenine, and
cytosine and guanine in DNA. It can also be encountered between constituents of crystals
such as KH,PO,4, KD,PO, (KDP), Ca(OH),, or Mg(OH)s.
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Metallic bonding

The metallic bonding can be understood as the bonding between positively charged metallic
nuclei/ions and delocalized conduction electrons, seen as a “sea of free electrons”. It prevails
in elements in which the valence electrons are not tightly bound with the nucleus (in metals,
for example). However, in the metallic bond we cannot speak about ions, since there is no
particular electron that is “lost” to another ion. Unlike other bonding types, the metallic
bonding is collective in nature, so that no single “metallic bond” exists. It is neither intra- nor
intermolecular since no molecule can be distinguished in metals. Metallic bonding can be
understood as a nonmolecular, extremely delocalized communal form of covalent bonding.
The delocalization is most pronounced for s and p electrons, with | = 0 and | = 1, respectively,
being much weaker for d and f electrons, which have quantum numbers | = 2 and | = 3,

respectively.

fixed cation
CICICIC
SIOYICIC
®® ®T
sea of electrons

In metals, an atom achieves a more stable configuration by sharing all its valence
electrons with all other atoms in the crystal. However, besides delocalization, metallic
bonding also requires the availability of a far larger number of delocalized energy states than
of delocalized electrons. These states are referred to as electron deficiency; they assure the
kinetic energy for delocalization.

The metallic bonding is encountered, for example, in alkaline metals such as Li, K, Na,
with electronic configurations that resemble those of noble gases with an additional s electron
on the outer shell. Having few electrons on their outer shells, alkali metals have only partly
filled energy levels, and therefore are electron deficient. In forming the crystal, the
wavefunctions of the outer s electrons overlap with those of their nearest neighbors, and the
electrons become delocalized. Their dynamics resembles that of free electrons, so that in

alkaline metals the lattice is occupied by the positively charged ions with the noble gas
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structure (they occupy in fact only as much as 20% from the volume of the crystal), while the
valence electrons occupy the remaining volume. Unlike in covalent crystals, where the
electronic charge is distributed in a strongly nonuniform manner (the bonds are spatially
oriented), the electronic density in metallic crystals is highly uniform. This explains the high
elasticity and malleability of these materials.

The total Coulomb potential, which includes electron-electron, electron-ion and ion-

ion interactions, is Ug,, =U.. +U.; +U,; < 0 (the first and third terms on the rhs are

positive, the middle one is negative). Therefore, the attractive potential is of electrostatic
nature, being balanced by the repulsive interaction due to the Pauli exclusion principle. It
should be mentioned that it is not necessary for metals to have metallic bonding. For
example, many transition metals show covalent properties (not all electrons participate in

covalent bonds, and are good electrical conductors).

Note: In transition metals (Fe, Co, Ni, Cu, Zn, Ag, Au, Mn, etc.) the d orbitals are only
partially occupied and the outermost s orbitals are fully occupied.

Example: 4s*full, 3d—incomplete.

Crystals with metallic bonding are usually characterized by

o high electrical and thermical conductivity, with weak temperature dependence
o high elasticity
o high optical reflectivity in a large frequency bandwidth

o broad range of melting temperatures: low melting temperatures for alkaline metals (Li,
Na, K, Rb, Cs), intermediate for noble metals (Cu, Ag, Au), and high values for metals
such as Ti, Zr, Mo, W. The corresponding cohesion energies vary between —1 eV and

-5eV.



Lattice oscillations. Phonons

Let us consider a crystalline material consisting of a large number N,,, of heavy positively-
charged ions (composed of the nucleus and the valence electrons on the inner atomic orbitals)

with masses M, and situated at positions R,, a¢=1,.., N,,,, surrounded by and in interaction
with N, electrons on the outer atomic orbitals with masses m and at positions denoted by r;,

i=1,., N, . The total Hamiltonian of the system is then

H :Tel +Tion +Ve| +Vion +Ve|—ion

o, 1 1 (
D+ V., +=22U,rh—-r)+=>U (R, —R,)+2.V(r—R,
- 2m T 2M, ° 22, /(i =1) 2azﬂ ( ») Z( )

i%] ap

1)

The terms of the right-hand-side denote, in order, the kinetic energy of the electrons, the
kinetic energy of the ions, the (Coulomb) interaction energy of electron pairs, the interaction
energy of ion pairs, and the interaction energy between electrons and ions.

Since m << M, the electron velocities are much higher than the ion velocities, so that
the electrons “see” a “frozen” distribution of ions, while the ions can only sense the average
(not instantaneous!) spatial distribution of electrons. In other words, for a given ion
configuration the electrons are in a quasi-equilibrium state that is slowly varying in time due
to ion’s motion, whereas the ions evolve slowly in a potential distribution generated by the
average configuration of the electrons. This adiabatic approximation, known also as the Born-
Oppenheimer approximation, allows a factorization of the total wavefunction of the system,

Y(r,R) with r={r,r,,..,r }, R={R;,R,,...,Ry, } into an electronic part, w(r;R), in

which the ion’s positions are considered as parameters, and into an ionic part, ¢(R):
Y(r,R) =y (r;R)4(R). )

These electronic and ionic parts satisfy the following equations:

Z—;—mvf JF%ZUe,(ri —1)+2V(r-R,) w(rR)=E4(R)w(r;R) (3)

i#]
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Z—h

2 1 _
> oM. & +Eazﬂuion(Ra - Ry)+Ea(R) [¢(R) = E4(R), (4)

a#f

where E is the energy of the whole system and E,, is the energy of the (sub)system of

electrons.

Let us assume further that in a crystalline lattice with s atoms in the basis, the ions
move around their equilibrium positions R?, so that |R, — R’ =u, |<<R?. Then, the

interaction energy between pairs of ions can be expanded in a Taylor series around the

equilibrium positions. Taking into account that

(5)

oUin (R, —R Ui (R, —R
vuion(Ra_Rﬂ):( |0n( a ﬂ)u n |0n( a ﬂ)uﬂjzo

R, ¢ R4

since the force that acts upon an ion at equilibrium (which is proportional to this derivative)
vanishes, we find that

guion(Ra_Rﬁ):lguion(Rg —RZ)JFaﬁZI'f\égUgUZ. (6)
a;tﬂ a;tﬁ’ it
where
2
ALY — 0 Uion(Ra - Rﬂ) (7)
i OR“OR), .
Ravﬂ:Ra,ﬂ

and the indices x = x,y,z (and v) denote the projections of the position vectors on a Cartesian
coordinate system, the first spatial derivative of U,,, vanishes due to the requirement that the
force (which is proportional to this derivative) that acts upon an ion at equilibrium vanishes,
and higher-order terms in the Taylor expansion are neglected. The last approximation is called
harmonic. Because the first term in the Taylor expansion of U,,, is constant, it can (together
with E, ) be included in the reference energy of the system, so that in the harmonic

approximation the lattice dynamics is described by the Hamiltonian
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(p4)? Uy
. 8
azﬂzlvl 2a,§,v atlp (®)

The dynamics of the lattice oscillations can then be expressed in the canonical form as

. aHlon v - aHion p(g
y == PV = Z sUg, ug:ap—”:M_' (9)

and the equation of motion for the displacement of ion « in the x direction,

M, i~ +Z Aluy =0, (10)

describes in fact a set of coupled harmonic oscillators. The coupling strength with
neighboring ions is characterized by the coefficients A/;. A harmonic potential energy

corresponds to forces that are linear in the displacements.

In the harmonic approximation one can view the lattice vibration as an interaction of
connected elastic springs (classical harmonic oscillators), as in the figure below. The lattice
oscillations are thus similar to elastic waves that propagate through such a chain of connected
springs. If an atom is displaced from its equilibrium site by a small amount, it will tend to
return to its equilibrium position due to the force acting on it. This results in lattice vibrations.
Due to interactions between atoms, various atoms move simultaneously, so we have to
consider the motion of the entire lattice.

equilibrium

n+3

strained



Lattice oscillations. Phonons 4

Note that in coupled harmonic oscillators, the force that acts on an ion « from other

ions 4, given by FJ' =M,u} =-> AlJuj, is proportional to the relative displacement,
pv

U, — Uy . This means that the expression of the force should be
R =2 Aap U = =2 Ay (U ~Ua) (11)

This is possible only if the following equation is satisfied:

%A”V = AL+ Y A =0. (12)

Q,
p#a

The physical relevant solutions for the system of harmonic oscillators are of plane-
wave type, i.e. are oscillatory in time, with the same frequency for all ions. These are the
normal oscillations. Because of the periodicity of the crystalline lattice, the amplitude of ions’
displacements in different unit cells are the same, so that only the phase of the oscillations
vary from one unit cell to the other. So, for a crystal with s atoms in the basis and N

elementary cells, « ={y,n}, y = 1,....,5s, n = 1,...,N, we look for solutions of the form

(Nion :SN)

uf, (t) = Ug ; (K)ey, (K)expli(k - Ro, —@; (K)1)] (13)

where uy , (k) is the amplitude of the normal oscillations of type A (several longitudinal and
transverse oscillations) that propagate along the direction k/|k|, and e, (k) is the

polarization vector of y-th atom in the unit cell (not normalized to unity!). Introducing this
solution in (10), we find that the polarization vectors of the atoms satisfy the following system

of 3s equations (v=1,2,3,and y=1,...,5)

M, o7 (K)ey, = 3 Alym, explik - (Rm, — R, )ley: = 2By (K)eys, (14)

m,y,v Y24
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where B%) (k) = ZA”” exp[ik - (Ry, = Ry,)]. In general, we have a system of ds

ny.my

equations, where d is the number of dimensions.

It can easily be demonstrated that the matrix of the coefficients B%” (k) is hermitic,

which implies the orthogonality of the polarization vectors
Z[e (K)] &% (K) =58, (15)

from which it follows that the system of 3s equations has non-trivial solutions only when

Det|B (k) - M @ (k)&

20w |=0. (16)
This condition represents a characteristic equation for >, which has 3s solutions/branches
for a given k, called the normal oscillation frequencies of the lattice, with corresponding
polarization vectors e, (k) . The dependence of the oscillation frequencies @, on k is called
the dispersion relation of the normal oscillation of the A-th branch.

From the definition of BY (k) , if AfJ,, are real, it follows that B, (k) =[B; (- K]

and thus

2 () =[e (KT, @i (k) =[a} (-K)] (17)

or w, (k) =, (—k) since the oscillation frequencies are real and positive.
If, in three dimensions, we consider a lattice with one atom in the basis, i.e. withs =1
then we have three oscillations branches (there are three degrees of freedom for each atom), A

=1,2,3, and in the limit k = 0 of long wavelengths,

M7 (0)ef; (0) = Z Bi1" (0)e.. (0) (18)

B (0) = Z At = At + 2 At =0, (19)

m=n
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the last equality following from (12). Because the left-hand-side of (19) vanishes and the
polarization vectors are finite, it follows that @, (0) =0 and the dispersion law for the three

branches in the long-wavelength limit can be written as

@, (K) = Ve, (KK . (20)

The parameters v, , are called acoustic velocities since a similar relation as that above holds

for acoustic waves propagating in a continuum, elastic and isotropic medium. Moreover, the
oscillations that take place in the direction of the propagation vector k are called longitudinal
and those normal to k are transverse: we have one longitudinal and two transverse acoustical
oscillations. The figure below illustrates the dispersion relation of a crystal, in which we can
identify only acoustical branches, which means that the there is only one atom in the basis of

this crystal.

For complex lattices, with s > 1, there are again three oscillation branches with an
acoustic-like dispersion relation in the limit k — 0, as above, corresponding to the situation in
which all atoms in the lattice have the same displacements (oscillate in phase), and thus the
complex structure of the lattice is not manifest. These are the acoustic oscillation branches.
However, in this case we have also 3s—3 oscillation branches with no analog in the dynamic
of continuum media and for which the dispersion relation in the long-wavelength limit has the

form
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o, (K) = @y, - B,k*. (21)

These are the optical oscillation branches, characterized by the cut-off oscillation frequencies
@,,; the parameters [, are generally positive. This type of oscillation branches is called
optical because, when the unit cell consists of ions with different type of charges (positive and
negative), these oscillations form an instantaneous dipolar moment that interacts strongly with
the electromagnetic radiation. In this case ions with different sign oscillate in anti-phase, i.e.
their displacements are in opposite directions. As for the acoustic oscillations, in three
dimensions we have one longitudinal and two transverse optical oscillation branches for each

s value.

Oscillations of an infinite atomic chain with one atom in the basis

For exemplification, let us consider first a simple one-dimensional infinite lattice (an “atomic
chain”) consisting of identical atoms (more precisely, ions) with mass M, separated by the
lattice constant a, as in the figure below. We expect ds=1 (ford =1 and s = 1), i.e. a single,

acoustical oscillation branch.

For (thermal) vibrations of the crystalline lattice, in which the ions move slightly around their

equilibrium positions R? =na, their actual positions R, satisfy the relations

IR, —RY =u, |<< R?, where the displacements can occur either along the chain or transverse

to the chain of atoms.

It should be noted that one-dimensional lattice vibrations are not encountered only in
atomic chains. For example, in a simple cubic crystal with one atom in the primitive cell,
when a wave propagates along the directions of the cube edge, face diagonal, or body
diagonal, entire planes of atoms move in phase with displacements either parallel or

perpendicular to the direction of the wavevector (see the figures below).
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We can describe the displacements of the plane n from its equilibrium position with a single
coordinate, u,. The problem becomes in this way one-dimensional. For each wavevector up,

there is one solution with longitudinal polarization and two with transverse polarization. The
parameter A is different for longitudinal and transverse waves.

We have already seen that, in the harmonic approximation, the dynamics of the system
IS equivalent to that of coupled harmonic oscillators, the harmonic potential acting on an ion
describing a force that is linear in the displacement. For simplicity, we assume further that
only the interaction between nearest neighbors is significant, case in which the force exerted

on th n-th atom in the lattice is linear in the ion’s (relative) displacements and hence given by

I:n = A(un+l_un)+A(unfl_un) (22)

where A is the interatomic force (or, equivalently, the elastic constant between nearest-
neighbor ions).

Applying Newton’s second law to the motion of the n-th atom with mass M,

M (d?u, /dt®) = F,, we obtain

d?u,

M
dt?

= A(un+1 - un) + A(unfl _un) = _A(Zun —Upy — unfl)- (23)

A similar equation should be written for each atom in the lattice. The solutions of the equation
above have the form
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uy, (t) = ug exp[i(kR? — wt)] = u, exp[i(kan — wt)] . (24)

Such solutions represent traveling waves, in which all the atoms oscillate with the same
frequency o and the same amplitude u, and have wavevector k. Solutions of this form are
only possible because of the translational symmetry of the lattice. Note that in (24) there is no
need for the indices y, 4 or u because here is only one atom in the basis (y = 1), we have one
oscillation (4 = 1) and one dimension (x = 1). In addition, all atoms oscillate with the same
amplitude, and no polarization vectors need be introduced (it can be included in uy).

Inserting (24) into the equation of motion (23) we obtain

— Mw? = —A[2 — exp(—ika) — exp(ika)] (25)
or
Ma? = ZA(l— exp(ika) ;e"p(‘ika)) — 2AlL— cos(ka)] = 4Asin?(ka/?2). (26)

and the dispersion relation, represented in the figure below, is

w(k) = 2//AIM [sin(ka/2)]. 27)
0
g = < - = 2(AIM)"?
W
\ I’_f
l'-, Ilr."
"l'-. Iu"lll
\ I
\ f
! ]
f ll"'. f
\ |/
/ III ' \
I y
?n 0 2n k
a 1% Brillouin zone a

Please observe that equation (23) follows also directly, by particularizing (10) for one-

dimensional motion and assuming that only the nearest-neighbor atoms interact with each
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another, so that A,, =0 for m=n,n£1. In this case, A,,; = A,,...=—A, A,, =2A, such
that the sum rule (12) is satisfied. Similarly, equation (25) could have been directly written
from Ma® =[A, .1 exp(-ika) + A, , + A, 1 exp(ika)] .

Because the dispersion relation is periodic: w(k) = w(k + 2z /a), with the periodicity

given by the reciprocal lattice vector, all distinct frequency values can be found in the k

interval

—-rla<k<rla, (28)

which corresponds to the first Brillouin zone. The maximum (cut-off) frequency .

=2/A/M is obtained for the minimum wavelength of A, = 27 /(z/a) = 2a. The existence
of a minimum wavelength can be understood as resulting from the condition that waves with
wavelengths smaller than 2a cannot propagate in the lattice, being reflected at the boundaries
of the first Brillouin zone.

The significance of the periodicity of the dispersion relation is evident from the figure

below: changing k by one reciprocal lattice vector gives exactly the same movement of atoms.

2=10a 1=%a
21 2n  2r

"y LAY " S \r‘.
/ SN
f N - - Y DY
v v
LY N [ o o [ roa
[ : [ ; [ '
[ \ P I [ F
o H ' ' '
] ! ) o0 : \ ‘
1 \ | . ' )

In the long-wavelength limit ka/2 <<1, we have sin(ka/2) =z ka/2, and

oK) = VA/Mak =v,.k (29)

so that the oscillations are acoustic and characterized by the acoustic velocity v,. =avA/M .
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Moreover, since the oscillation frequency does not depend linearly with k, we can
define separately the phase velocity, i.e. the velocity of the phase of the wavefront, and the
group velocity, i.e. the propagation velocity of the wavepacket and of the wave energy. Their

modulus are given, respectively, by

oy = | _ Aa|sin(ka/2)| :Vac|sin(ka/2)|1 (30) AV
k| VM| ka/2 | *| ka/2
dw A

Vg = ‘d_k = \/%a|cos(ka/ 2)| = Vy|cos(ka/2)|. (31)

2Vl T

In the long-wavelength range, k — 0, v, =V, =V,,

» k

while at the edges of the first Brilouin zone, for 0 ma

k=xr/a, vy, =2v, /7 and v, =0.

Finite lattices

For finite one-dimensional lattices consisting of N identical atoms, the requirement of
symmetry (of equivalence of physical properties) when the equation of motion refers to
different atoms imposes the cyclic boundary condition u, =u,,,. This so-called Born-
Karman condition expresses the independence of the properties on the surface, i.e. we have a
finite solid, with no surfaces; a finite chain with no end. From the cyclic boundary condition it

follows that exp(ikNa) =1, or

_2z N
k=-"m, (33)

with m an integer. There are N allowed m values

for k in the first Brillouin zone:

~N/2<m<N/2, (34)

which correspond to the N degrees of freedom of the system. Because N is usually a large
number, the discrete nature of the wavenumber is disregarded and it is considered as a

continuous variable. Below: example for N = 10.
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Density of oscillations in a simple finite one-dimensional lattice

12

How many oscillations (with different k values) exist then in the frequency interval

(w, 0 + dw) ? This number is referred to as the density of oscillations per unit frequency and

is denoted by dN,./dw=D(w). Because for the finite one-dimensional lattice the

wavenumber varies only in discrete steps of Ak =27/Na, there is only one oscillation

possible in this wavenumber range, so that

dN,. ~ 1 _Na

=— 35
dk Ak 27 (39)

and, taking into account the double degeneracy due to the

symmetry of (k) (two k values correspond to the same

), We obtain
dN dN,. dk N 1
D(w) = osc:2 osc ™ _ %
(@) dw dk do 7 +A/M |cos(ka/2)|
N 1 N

2N

2N/ 7oma

1
7 JAIMA1=sin?(kal/2) 7 JAIM 1-0? ok,

T

1
\ Ok — @

ax

(36)
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Oscillations of an infinite atomic chain with two atoms in the basis
Let us assume that we have an infinite one-dimensional lattice with lattice constant a,

consisting of equally spaced ions with different masses M, and M, > M, (see the figure
below). The basis has therefore two atoms, placed at equilibrium positions Rnl =na, and

Re, =(n+1/2)a. In this case d = 1, s = 2, so there should be two oscillation branches, one

acoustical and one optical.

equilibrium

n+2

q/fm//vq/v
110"

un—l,l Un. 1,2 n1 un,2 un+1,1 un+1,2 un+2,2
strained

Similarly to the atomic chain with one atom in the basis, when there are two atoms per
unit cell we have two equations of motion of the general form F =M (d?u/dt?), one for
every type of atom. To distinguish between the displacements of the two atoms, we denote
with uy; (t) = uge; expli(kan — at)] the displacement of atoms with mass M, (the yellow ones
in the figure above) and with u,, , (t) = uge, exp[i(ka(n +1/2) — wt)] that of atoms with mass
M, (the green ones). (Note that, for simplicity, we omit for now the index A, which has two

values: ac and opt, corresponding to the acoustical and optical oscillations.) So, we have

d2u
M; Tnl = A(Upg2 —Un1) + AUz —Un1) ==A(2Un; —Upo —Upg2), (37a)
d?u,,
M, dt—2 = A(Un1 —Un2) + A(Upgg —Unp) =—=A(2Up 5 —Upg —Unygg), (37b)
or
—M,w?e, =—2Ae; + Ae,[exp(ika/ 2) + exp(—ika/2)] =—2Ae; + 2Ae, cos(ka/ 2), (38a)

- M,w?%e, =-2Ae, + Ae;[exp(-ika/2) + exp(ika/ 2)] = —2Ae, + 2Ae, cos(ka/2) . (38b)
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This system of coupled equations has solution only when its determinant vanishes, i.e. when

— 2 —
2A-M,@ 2Aexpcos(k§1/2) _0. (39)
—2Acos(ka/2) 2A-M,w
or
4 2
0 — 0?0? + 27 sin? ka)_ 0 (40)
4 2
with of =2aMi*Mz oy MM,
MM, (M; +M,)

From (40) it follows that there are two solutions (two types of lattice oscillations) for every

value of k; these are the optical and acoustic branches. The two solutions are

! (K) = %5{1—\/1— 72 Sinz[k_Zaj:l' 5 (K) = %g{l-f- \/1—7/2 Sinz(k—zaj:l . (41)

As for the one-dimensional lattice with one atom in the basis, w,,(k +27/a)=w,,(k), so

that all relevant values are found in the first Brillouin zone.
Again, the dispersion relation could have been obtained directly from (14). More

precisely, when only the nearest neighbors interact we would have obtained
Miw®e; (k) = Anzn-1,2 €Xp(=ika/ 2)e; (k) + Anynar (K) + An ez €XP(ikal 2)e; (k)
M,w?e, (k) = An 211 exp(—ika/ 2)e; (K) + Ay 2. 282 (K) + Ay 2011 €Xp(ikal 2)e; (k), so  that
the dispersion relation is recovered if Ajin12=Anznia2 = Anznats = Avanir =—A and
Anzni = An2n2 = 2A (the sum rule (12) is again satisfied!).

From the solutions (41) one can identify the oscillation branches: the acoustic one

corresponds to the first solution, for which

a)ac(o):a)l(o):O! wac(igjz%\jl_ V1_72 >a)ac(0)’ (42)
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and the optical branch is consistent with the second solution, for which

a)opt (0) = a)z (0) = a)O! a)opt(i %) = % Vl+ V1_72 < a)opt (O) ' (43)

|
\:_/\:_/“ optical branch

|
; | ( ~
_ | |
! | - Jat
: | \J\\\k_ v
' >
t

acoustic branch

®

0—
[ Q-
0 g Y
-27a ’ )
first Brilloin zone 212 ./
K =2n/k

Because for the acoustic branch @,.(0) =0 for k = 0, from the system of coupled

equations (38) it follows that (e;/e,).. =1, which implies that the displacement of the two

types of ions is the same/occurs in the same direction and the unit cell moves as a whole; it
oscillates in phase (see the figure above, bottom, right). On the other hand, in the long-

wavelength limit of the optical branch, (e;/e;)qx =—-M, /My, i.e. the ions are displaced in
opposite direction and we have out-of-phase oscillations. The oscillations occur such that the
center of mass of each ion pair is fixed, i.e. M,e; +M,e, =0 (see the figure above, top,
right).

In the long-wavelength limit, when sin(ka/2) = ka/2, the dispersion relation of the

acoustic branch can be approximated as

N A A Y
a)ac=\/§\/1 |:1 2(2)]— 47’ka’ (44)
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1 A
ac k) = Vack ) Voo =— = | 70——a, 45
@5 (K) 46007/3- \2(M, + M) (45)

while the dispersion relation for the optical branch becomes

on = -2 (2] a2 (2] 0

or

Wopt (k):a)o _ﬂkzi ﬂ=m0y2a2/32. (47)

Note that, to calculate the density of states for the finite one-dimensional lattice with
two atoms in the basis, we can follow the same treatment as for the atomic chain with one
atom in the basis, taking into account that we must calculate separately the density of states

for the two oscillation types, which have different dispersion relations.

Density of states in a finite three-dimensional crystal
The density of states/oscillations in a three-dimensional crystal is obtained, as in the one-

dimensional crystal, by imposing the appropriate boundary conditions for u,, . Because there

is a large number of atoms in a crystal, which interact strongly with their neighbors, the
contribution of the atoms at the surface of the crystal to any physical phenomena is negligible.

Therefore, we can employ again the Born-Karman cyclic condition

Uny = Ulnin,) (48)

with uf’, = uoe; exp(ik - Rr?;( —imt), where N, is the number of atoms in the x,, direction,
= 1,23, with x, =X, X, =Y, X;=2. As in the one-dimensional case, the wavevector

component along the w direction in the first Brillouin zone has a discrete spectrum,

k, = m (49)
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M em, <2 (50)

where a, is the lattice constant along x,, and m, are integers, i.e. it varies in steps of

Ak, =27z/L,, with L, =N ,a, the length of the crystal along the x, direction. The discrete

78

k values in a two-dimensional lattice are represented by points in the figure below.

o Ky

BN

« ~allowed k values

It follows then that a state/oscillation occupies a volume in the k space given by

3
AK = AK,AK,AK, = (2\’/[) , (51)

where V =L, L,L; = NQ is the volume of the crystal with SN =sN;N,N, atoms that form a

lattice with a primitive cell of volume Q =a,a,a; and s atoms in the basis.

The density of states/oscillations in the k space is then defined as

Ny LV 52)
dk Ak (27)

The density of oscillations in the frequency space, defined as

D(a)) — dNosc — dNosc dk (53)

de dk do’
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represents the number of oscillations (with different k values) that exist in the frequency

interval (o, + dw). In this formula dk is the volume in k space between the surfaces w(k)
and (k) +dw(k) (see the figure below). The density of oscillations is discrete (as for one-

dimensional crystals) but, for sufficiently large crystals, the sum over the discrete states can

be replaced by an integral. We can calculate it observing that

® 4 Jdo = const

dk,
® = const
dS,

dk= [dS,dk, = | dS, o2 (54)
w(k)=const w(k)=const | Vka)l
from which it follows that
\Y ds,
D@)=—"= | - (55)
(272-) w(Kk)=const | Vo |
We can express also the density of states as D(w)de = [V /(27)*]dk , or
[D(w)do = v - [k, (56)
(27[) 15tBZ

which represents a particular case of approximating a sum over k in the first Brillouin zone by

an integral, approximation that for an arbitrary function f (k) is

S (k) = — 3 f(K)AK - — [ f(k)dk . (57)

k (271')3 k T 315tBZ

For f(k) = F(w(k)), we have
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; F(w(k)) = [ F(0)D(w)de (58)
if the density of states is normalized in each branch y, y = 1,...,s such that

@max

[D(®)dw = 3N (59)

with @,,,, the maximum value of the oscillation frequency in the branch.
Note that for the three-dimensional crystals, we have not defined the density of states
normalized at unit volume (as for the atomic chain with one atom in the basis), but have kept

the crystal volume throughout the calculations!

Quantized oscillations/phonons in a one-dimensional finite lattice with one

atom in the basis

We have seen that in the one-dimensional lattice with one atom in the basis, the ions act as
coupled harmonic oscillators. Here we show that this system of coupled oscillators can be
reduced to an equivalent system of independent harmonic oscillators by the introduction of
normal coordinates. Then, we associate a normal oscillation to each normal coordinate. The

Hamiltonian of the finite one-dimensional lattice with one atom in the basis can be written as

Ho =3 Po 13, (60)
ion = 2.t ' UnUp:
nZ:lZM 2n,§::l

In the quantum treatment of the system of coupled harmonic oscillators, the position and
momentum coordinates become (conjugate) operators, such that

[Gn’ ﬁn] = ljjn f)n‘ - ﬁn‘an = ihé‘nn' ' [anian'] = O, [f)n! f)n] = 0 ' (61)

We can introduce normal position and momentum operators,

Q. =N"?3 0, exp(-ikna), B =N2Y p, exp(ikna), (62)

in terms of which the original operators can be expressed as
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G,=N ‘1’22kjék exp(ikna) , p, =N ‘1’2; P, exp(—ikna). (63)

The normal operators satisfy the commutation relations

[Q.,P.]=N" >.[G,, pr]exp(ik'n'a—ikna) = N “ind expli(k'—k)na] = indy., (64)
[Qk:ék']=01 [FA)k,FA)k']=0,
since

3" expli(k—k)nal - zexp[.zmm/N] exp(i2zm/ N)[exp(i2m) —1]

=No, = No 65
1 ] exp(i2zm/N) -1 w - (69)

for k, k' in the first Brillouin zone, for which k'-=k = 2zm/Na with m an integer. From the
commutation relations it follows that the normal position and momentum operators for the

same wavenumber k are also conjugate.

Because there are N normal oscillations and U,, p, are hermitic operators, (jk* = (ﬁ,k,
P =P, and, for k in the first Brillouin zone (where it takes N discrete values) we have 2N

normal operators: N normal position operators Q,, and N normal momentum operators P, .

In the normal position and momentum operators, the kinetic energy term in the

Hamiltonian becomes

ps 1
= P.P.S exp[-i(k + k')na] = —— PP 66
nZIZM 2MN|§ k anl p[=i( ynaj = Z k ok (66)

with k in the first Brillouin zone. In a similar manner,

L a0, =izc§kék-zAm exp(ikna) exp(ik'n'a)
2 2N «x nn' (67)

rO)
3M

expli(k+k)nal3 A explik'(n'-n)a] = %;af(k)éké_k

if we take into account that 3" A, exp[ik'(n'-n)a] = Mo® (k') and ao(-k) = w(K).

The Hamiltonian of the system of ions,
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I Iskls—k sz(k)éké—k
Hion_zk:[ 2M + 2 J! (68)

describes a system of harmonic oscillators that are not, however, totally independent since the

terms corresponding to k and —k are still coupled. To avoid this situation, we introduce
annihilation and creation operators for each k, a4, and &, , and express the normal position

and momentum operators as

(8 —a%). (69)

A A 2 in |2Mao(k
(@& +ak), Pe=—= Mol

=\ 2Mw) 2\ &

The creation and annihilation operators satisfy the commutation relations
[ék!élz—']:é\-ké;'_é;'ék :5kk'1 [ékiék']zo’ [é\,;,é\,;]zo (70)

For k in the first Brillouin zone, the Hamiltonian operator of the lattice is now a sum of N

independent harmonic oscillators:

=2 - @08, 1 8,80 - Thot a1d, 3 |- Tho| R3], 0D
k Kk 2 k 2 k 2

with [H,,H.]=0, N, =474, the hermitic number operator, for which [N,,N,]=0 and

[Nk H «]=0, (in the third term of the equation above, we substitute first k for — k).

For each k mode, the eigenstates (Fock states) and eigenvalues of the Hamiltonian and

the number operators are

(&)"

|nk>: \/n—kl |Ok>l (723.)
E, = ha)(k)(nk +%j n=0,1,2.... (72b)

where |0, ) is the fundamental state of the oscillator, and
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a, |n)=4n | n -1, a [ny=+n+1[n, +1), N [n) =n|ny) (73)

with a, |0, ) =0. The eigenstate of the lattice Hamiltonian is then (there are N discrete values

for k)

| nk:l y nk2 T nkN > =| nkl >® | nk2>®® | nkN > (74)

and the energy of the collection of harmonic oscillators is

E=YE, = Zha)(k)(nk +%] =E,+E,. (75)

where E, =, hw(k)/2 is the zero (fundamental) energy, and E, =3 hc(k)n, is the
energy of the quantized oscillations of the lattice in an excited state.

The state of each k quantum oscillator can be seen as that of n, excitation quanta,
each with an associated energy zw(k). This excitation quanta is associated to a quasi-particle

named phonon, in analogy with the photon, which is the quanta of the electromagnetic field.
In the one-dimensional lattice considered here, the phonon is called acoustic phonon since
there are only acoustic oscillation branches in a one-dimensional lattice with one atom in the

basis, and the lattice has n, phonons at the wavevector k;, n,, phonons at the wavevector

k,, and so on.

Similarly, in a one-dimensional finite lattice with two atoms in the basis and N values
for k,

|:|ion = Yho, (k)(éz,iék,z +%j, (76a)

k,A1=1,2

(ékl,l)nkl'l (5-;1,2 ) 2 '-'(ékN ,1) e (ékN 2 ) a2

\/(nkl,/l)!(nkg,/l)!"'(nkN )

10) (76b)

| nkl,i’nkz,ﬂ""' nkN,i> =

with | 0) = 0,0,...,0) , and

E- ¥ ha),l(k)(nm %j (77)

k,1=1,2
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where the phonons associated with the A =1 branch are the acoustic phonons, and those
associated with A =2 are the optical phonons.

In a three-dimensional lattice with s atoms in the basis, there are three degrees of
freedom for every atom, and hence there are 3 acoustic phonons and 3s —3 optical phonons.

A typical phonon dispersion spectrum for s = 2 is illustrated below.

Wi

|
%ﬂ} optic branches

} acoustic branches

Phonons are quanta of the collective/thermal lattice oscillations. The crystalline lattice
can be viewed either as a collection of coupled harmonic oscillators or as a gas of free/non-
interacting phonons, which obey the laws of quantum statistics. In particular, phonons are
bosons and obey the Bose-Einstein statistics. However, since they are not real particles, their
number is not independent of temperature and volume, so that the electro-chemical potential
of the phonon gas must be zero. Then, the thermal equilibrium number of phonons with

frequency w, (k) is given by the Planck distribution

1
N, =n = .
PR T explii, (K) Tk T]-1

(78)

So, the number of phonons is small at low temperatures %w, >>kgT, for which
n,, =exp[-hw, /ksT], but becomes high at large temperatures 7w, <<kgT , for which

o 2L+ (hao, [KeT) =1 = kT /1w, .



Phononic heat capacity

The thermal properties of solids, and in particular the heat capacity, are determined by both
phonons and electrons. We refer now to the phonon, or lattice, contribution to the heat

capacity. The heat capacity is defined as the heat AQ required to raise the temperature by
AT ,i.e. C=AQ/AT . If the process is carried out at constant volume, AQ must be replaced

by AU, which represents the increase in the internal energy U of the system. Then, the heat

capacity at constant volume is

oU
(5. o

The phonon contribution at the heat capacity is obtained from the lattice energy term

1 1 1
E=>n Ne,+—=|=D.h +— 2
% w“( ot 2) kzz w""(exp(hwm/kBT)—l 2) @)

of the internal energy U = E,, + E, with E,, the energy in the equilibrium configuration of

the system. Actually, expressing the internal energy of the system in terms of the free energy
F and the entropy S as

U=F+TS, (3)

apart from the heat capacity at constant volume C, =(0U /dT), =T(6S/0T), we can define
also a heat capacity at constant pressure, C, =T (6S/0T), . These two parameters are related

through C, —C, =-T(6V /0T)3 /(6V /&P);, and one can be determined from the other.
These parameters are the same only in the harmonic approximation of lattice oscillations.

In a classical statistical theory, based on the classical partition function, the mean
energy of a one-dimensional oscillator (resulting equally from its kinetic and potential energy
parts) is kgT , value that becomes 3k T for a three-dimensional oscillator. Then, for sN
three-dimensional oscillators (E) =3sNkgT, and the phononic heat capacity at constant

volume is
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oE
Cp=|—1 =3sNkg, 4
ph (a.r jv B ( )

ie. C,, =3k per atom, or C, =3N,k; =3R=6cal/molK per mole, with N, the
Avogadro number. This is the Dulong-Petit law, and it predicts a temperature-independent
heat capacity. This prediction agrees with experimental data at high temperatures, but not at
low temperatures, where experiments indicate that C, o« T® — 0 as T — 0.

To explain the low-temperature behavior of the heat capacity, one should disregard the
classical statistical theory, which is no longer valid when the separation between the energy
levels of the oscillator is comparable to or higher than kT, and use instead the quantum

statistical mechanics. The specific heat of the lattice is then defined as

dE
= sz

C = —=
P dT kA

(ha)m ]Z [ exp(fiw, , 1kgT) (5)

keT ) [exp(ha, , 1KeT)—11*

This expression does not involve the zero energy of the lattice and is called for this reason the
phononic heat capacity. To specifically calculate the phononic heat capacity we need to know
the phonon dispersion relation. This relation is quite complicated for three-dimensional

crystals and therefore approximations are generally made.

The Einstein model
In this model each atom or molecule is considered as a particle that oscillates in the average
field of its neighbors. Therefore in the system with 3sN degrees of freedom all particles have

the same oscillation frequency @ . The phonon heat capacity is in this case given by
C i (T) =3sNkg B, (@ /T), (6)
where ®¢ is the Einstein temperature, defined by 7w =kg®¢ and

&2 exp($)
B,(£) = —=— el 7
©) [exp($) 1] g

is the Einstein function.
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At high temperatures, for £ =0, /T <<1, B,({) = éii(—mf))z =exp(&) =21, so that
_l_ —

C,n (T) = 3sNKg, (8)

as in the Dulong-Petit law, but at low temperatures, for & >>1, where B, (&) = &2 exp(=£),

the heat capacity has an exponential temperature dependence of the form

Con(T) ;3st3[%) exp(-0, IT). )

Although lirrgCph (T) > 0, the low-temperature dependence of the heat capacity is not

proportional to T* (see the figure above, right). The discrepancy is due to the inappropriate
treatment of the acoustic phonon contribution to the heat capacity. Unlike for optical phonons,
for which the frequency is almost constant as a function of &, the frequency of acoustic
phonons has a much wider interval of variation and the oscillations in different lattice cells
must be considered as correlated (the atoms oscillate in phase!). Therefore, since the Einstein

model describes in a satisfactory manner the optical phonon contribution to C,, the heat

capacity is expressed as

Con(T)=Cpr (T)+Cgi(T) (10)
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where
Cgﬁ‘(r):3(s—l)NkBBz(®E/T) (12)

and the contribution of the acoustic phonons is estimated from the Debye model.

The Debye model
In the Debye model the frequency of acoustic phonons in a general, anisotropic crystal is
written as

W =@y (k) =V, (0,0)k, A=123 (12)

with 6, ¢ the polar angles, and their contribution to the heat capacity is given by

(ha)sz exp(ha, , 1KgT)

2%\ ke T ) [exp(hio, , 1k T) -1 13
3 ? KsT
e ZI hay ; exp(ia, , 1kgT) . D(w, ,)d, ,
a1 kgT [exp(re, , 1ksT)—1] ' '
where
D(w,,) = % | ds, V k?dQ,
e (2”)3 o (k)=const |V, (277)3 o(k)=const | dwk,/l /dk | (14)
V a)Mdew

B (272')3 w(k)=const V:c,i (91 ¢)

is the density of states. The frequency integral in the expression of CG is performed between

O0and ., (0,9).If

i 3 dQ,, _ i (15)
A7 371 const Vgc,z 6, 9) Vgc
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is an angular average of the acoustic velocity (the equality holds as identity in the isotropic
crystal), then we can introduce also an angle-independent maximum oscillation frequency (the
Debye frequency) ., =®p Which, in the Debye model, is also independent on the
polarization A. This maximum oscillation frequency follows from the normalization condition

of the 3N acoustic oscillation branches:

3 @p 13 dQ VvV op Vo

D(w, ;dw, , =| — @ w’dw = D__3N, 16
;ﬂg (@ M0 (47r ;1 ~const Vac, 2 (60, (p)] £ 27V, (40
and so

wp =V, 672N IV . (17)

In this case
ac _Eik_s(kBsz“’f[ ho j“ exp(ha ! kgT)
A [exp(ia/ kgT) —1]? 8)
3
:ngN(Lj J4(®D/T)
Op
where ©, defined through 7w, = kg®, is the Debye temperature, and
< X" exp(x)
Jn (&) = (19)
g[exp(X) 1]

is the Debye-Griineisen integral, which has no analytical solution. The Debye temperature is
proportional to the acoustic velocity, and so is higher for high Young modulus values and for
lower crystal densities. It is usually determined by measuring the temperature dependence of
the resistance around the Debye temperature.

At high temperatures, for T >>®,, the argument in the J, integral is very small,

since X <<1, and after expanding it in series one obtains
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@D/T @D/T
© 2 gkyN[ | [ X "exp(X) g ok N[ [x? exp(x)dx
Op) 3 (L+x-1)° ) & 0

T SopiT
Op) o

while at low temperatures T << ®, the upper limit of the integral can be extended to o, so

that

~ ok N( jT xexp(0) g, _127°, N(lfoﬂ‘* 1)
"= 2 [exp(x) =1 5 °le

This temperature dependence can be understood from a qualitative argument: at low
temperatures only the phonon modes with energy % < kT are excited. These modes are, in
the k space, inside a sphere (the thermal sphere), so that the number of modes is proportional
to k® oc @® o T2. If each mode has an average excitation energy of kT, the total energy of
excitation is proportional to T* and hence the heat capacity is proportional to T>.

The total phononic heat capacity, C, =C +Cgﬁt, IS now in agreement with

experiments for both high and low temperatures (see the figure below).
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The Debye temperatures for some elemental crystals are given in the table below

Element | @p (K) | Element | @p (K) | Element | ©p (K)

Li 344 | Be 1440 | cu 343
Na 158 | Mg 400 | Ag 225
K 91 Ca 230 | C 2230
RD 56 Sr 177 | Si 645

Cs 38 Ba 110 Ge 374




Electron dynamics in the crystalline lattice

We have seen that, in the adiabatic approximation, the equation satisfied by the (sub)system

of valence electrons with mass m and positions r;, i =1,..., N, in the field of ions at positions

R,,a=1,...,N;, is

z-f—mvf +%Zue| (1) +2V(r—R,) w(r;R) = Es (R (riR), (1)

i#]

where r ={r;,1,,...1y, }, R={R;,R;...., Ry, }, and the interaction energy between electrons,

Uq(ri —1;) =e® l(4rg, | 1; — 1, |), is a bi-particle term of Coulomb type. This equation is quite
difficult to solve and, therefore approximate methods are employed. In one of them, called the

self-consistent field method (or Hartree-Fock method), the interaction energy between

electrons 1ZUel (r, —r;) is replaced by an effective field of the remaining N, —1 electrons,
L
i#]

which can be expressed as a sum of one-particle terms, YU . More exactly, if v, (r;,s;) is

the one-particle wavefunction for the ith electron, with s; the spin value, the antisymmetric

(with respect to the permutation operator of two electrons) wavefunction of the system of

electrons can be expressed as a Slater determinant,

wi(r,s;) wi(r,s;) - wi(ry, Sw,)
w(r) = 1 ‘/’2(":1’51) wo(ry,s,) - ‘//z(rNe:.,SNe|) 7 @)
A Nel! : :
Wig (1,51) Wiy (12,52) Wiy (Mg s S )

and the energy of the system is given by

Eq :Z<'//i | H; |l//i>+%z<l//il//j |Uq (n; _rj)|‘//i‘//j>_%z<‘//i‘//j Ug(ri=r)lviwi, 3)
i 1] 1]

j#i j#i

with
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o, /A i
Hi =__Vi + V ri - Ra, =__Vi +ViI0n 4
2m %‘ ( ) 2m ®

the one-particle Hamiltonian. The second term in the right-hand-side of E, is the Hartree

term, while the third term is the Hartree-Fock or exchange term.
If the total energy of the electron system could be written as a sum of one-electron

energies:

Ee :ZEi<Wi lwi), (5)

then the system of interacting electrons would be equivalent to a system of independent

electrons that satisfy the Schrodinger equation of motion

2
(_;l_viz +Viion "‘Uief Jl//i = (H; "‘Uief Wi =B, (6)
m
with
e 1 1
2 A |Wi>=§_z_<‘//i'ﬂj |Ue (r —rj)|!//i‘//j>—§_z_<‘//il//j U (i —r) v iwi). (7)
i i j=i i j=i

The effective field U can be determined if the one-electron wavefunctions ; are known,

but the latter can only be found if the effective field is given. It is a self-consistent problem,

which can only be solved iteratively. More precisely, a set of trial functions is first chosen,

such that H,¥ = E;(?, with the help of which the effective potential U is calculated.
If this effective potential is introduced in the one-electron equation, one obtains " as a
solution of (H; +U @)y ® = E.w®, and so on. The iterative process stops after, let’s say p

steps, when w*™ =" In conclusion, the motion of one electron in a crystal can be

described with the one-electron approximation. We use further this approximation and drop
the subscript i for simplicity.
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Electrons in a periodic lattice. Bloch functions

We have seen that an electron in a lattice is described by the Schrodinger equation

[ f V2+V(r)Jz//(r)=Ey/(r), ®)

2m

where the energy potential V =V ™ +U " describes the interaction with all positive ions and

the remaining electrons, and

V(r)=V(r+R,) 9)

for any translation vector R, of the infinite lattice.

The influence of lattice periodicity on the electron wavefunction can be deduced

observing that

(_ﬁvfmn +V(r + Rn)}//(r +R,)=Eyp(r+R,) = [—ﬁvz +V(r)]w(f +R,), (10)
om 2m

since V.., =V, =V. This implies that the electron wavefunction after the translation with

R, satisfies the same equation as before, and hence

y(r+R,)=Cuy(r), (11)

with |C, |=1, because the normalization condition on the volume V imposes that

[ly(r+R,)|? dr=|C, |° Jlw(r)|* dr =1. Moreover, at two successive translations we have
\Y \%

C.C, =C,.,sothat

C, =exp(k-R,), (12)

or w(r+R,)=exp(ik-R,)w(r), where k is, for now, a wavevector (more precisely, a quasi-

wavevector).
The symmetry properties of the electron wavefunction at translations can be used to

find the general form of the eigenfunctions of the Schrédinger equation for electrons in a
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crystalline lattice. More precisely, since w(r)=exp(-ik-R,)w(r +R,) =exp(ik - r) x

{exp[-ik - (r + R,)]w(r + R,)}, the wavefunctions can be written as

i (r) =uc(r)exp(k-r), (13)

where u, (r) =exp[-ik-(r + R,)Jw(r + R,) is a periodic function with the same periodicity
as the lattice, u, (r) =u,(r + R,). Electron wavefunctions of the form given above are called

Bloch functions.
Note that for free electrons, which satisfy the Schrddinger equation with vanishing

potential energy, and which have wavefunctions w, (r) =V “?exp(ik-r), with V the
normalization volume, all points in space are equivalent (the probability to find the electron at
a point r, |y, (r)|?’=1/V , is independent of r), and the wavefunction is at the same time an
eigenfunction of the momentum p=-iaV with eigenvalues p =7k (besides being an
eigenfunction of the Hamiltonian, with eigenvalues E, =#%k*/2m= p?/2m). In contrast,
for Bloch waves |y, (r) |°=| u, (r) |*# const., and only points that differ through a translation

vector R, are equivalent. Therefore 7k is the quasi-momentum of the electron in the crystal

and k is the quasi-wavevector; in the following, we will still refer to k as wavevector, for
simplicity.

The influence of lattice periodicity on the electron energy can be inferred observing
first that the electron energy in a crystal is k-dependent and real (the Hamiltonian is a hermitic

operator): E = E(k) . The Schrodinger equation can be expressed also as

(—ﬁ(V+ ik)? +V(r)juk(r) = E(K)u,(r) (14)
2m
since
Vi, (r)=V[u,(r)exp(ik - r)] = exp(ik - r)[Vu, +iku, ] =exp(ik - r)(V +ik)u, (15)

and hence VZy, (r) = exp(ik - r)(V +ik)?u, . Because the energy is real, from the (identical)

Schrédinger equations satisfied by the wavefunction for —k and its complex conjugate:
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(—ﬁ(v —ik)? +V(r)]u_k (r) = E(=K)u_(r), (16)

2m

[——hz (V—ik)2 +V(r)ju;(r) = E(k)u;(r), a7
2m

it follows that the energy is an even function of k:

E(k) = E(-K). (18)

In particular, the iso-energetic surfaces of an electron in a lattice, i.e. the surfaces in k space
for which E(k) =const., have an inversion symmetry; they are not, however, spheres as for
free electrons.

If in the crystalline lattice we perform a translation of k with a vector in the reciprocal

space, G, we obtain

E(k)=E(k+G) , (19)

because, by replacing k with k+G in (11) we obtain w(r+R,)=exp(ik-R,)w(r)
=expli(k +G)-R,Jw(r) since exp(iG-R,) =1 (the Schrédinger equation and the wave-
function are identical after a translation in the k space). Therefore, the energy is a periodic
function in the reciprocal lattice space (in k space), and takes distinct values only inside the
first Brillouin zone (remember that the whole k space can be divided in Brillouin zones with
all possible orders n, which have the same volume and can be reduced to the first Brillouin
zone by applying symmetry operations). In the Schrodinger equation for the electron k is a
parameter. As for phonons, where we have different solutions w(k) for a given k, associated
to different oscillation branches, we can have also different eigenfunctions and eigenvalues of

the electronic Hamiltonian (different energy values E, (k) ) for a given wavevector k.

Electron velocity in a crystal

We have seen that the electrons in a crystalline lattice are Bloch waves. The so-called Bloch
electrons are quasi-particles since their properties are dependent on the crystalline lattice. If
an electron with wavevector k is inside a lattice, one can introduce the concept of average

velocity through the quantum mechanical definition



Electron dynamics 6

W)=V == | Blv) =—[wi () 2 vy (e, (20)
m my |

A

with p=(#/1)V the momentum operator. For Bloch electrons the average velocity can be

expressed as

v=1urn 2w ik 0dr =4 s (v e, 1)
my i m imy

which differs from the expression for free electrons, v =7k/m = p/m, through the second

term.
To calculate the average electron velocity, we differentiate (14) with respect to k (we
apply the gradient in k space), and obtain

[i%(v+ik)+VkE]uk(r) -0, (22)

if the potential energy does not depend explicitly on k. From this result and the normalization

condition fuﬁ (ru, (r)dr =1 we can express (21) as
Vv

% [up (v + ik)uy (r)dr =%VkE, (23)
\%

so that, finally,
v=h"'V,E. (24)

This relation is identical to that obtained for free electrons with a parabolic dispersion
relation, in which E =#°k®/2m and, thus, V,E=#°k/m and v=#k/m=#"VE.
Therefore, (24) is a more general expression of average velocity than (21), the difference

being that in (24) the mass of electrons does not appear explicitly; in a crystalline lattice the

free electron mass m can be replaced by an effective mass, so that (24) holds, but not (21).
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Electron acceleration in a crystalline lattice. Effective mass
Let us now consider that the electrons in the crystal are accelerated by an external force F.
We separate the effects of the external forces on the electron and the Coulomb interactions
inside the crystal, by modeling the Bloch electron as a quasi-particle that reacts only to the
external forces. The influence of the Coulomb interactions on the electron dynamics is
characterized by an effective electron mass.

Because, according to the Ehrenfest’s theorem, the classical equations of motion are

valid for the average values of the quantum observables, we have

GE(k) _y gdk_ dlik) _ dp_
dt dt dt dt

v-F, (25)

i.e. the quasi-momentum p=#k of an electron in the crystal plays the same role as the
momentum of a free electron. Here F is only the external force; the internal forces in the
crystal are taken into account when calculating the dispersion relation E(k), and thus are
included in the expression of the average velocity.

The acceleration of the electron in the crystal can be defined as

dv 1 dE 1 dk 1
a=Y_ v &2y, v EE -2V (V,E-F 26
1 {mj hk[k mj Ly.w.EF) (26)

or, written on Cartesian components z, v =X,y,z,

a, =

dv
H :Z .
dt " a° ok,ok, v | Meg

2
S ﬁ=zf1j F . (27)
y7i%
From the relation above it follows that, in general, the acceleration of an electron in the
crystal has a different direction than that of the applied force. The relation between the
acceleration and the applied force can be used to introduce, as for the case of free electrons, a

second-order tensor parameter, called effective mass. Its inverse, defined as

1) L oE 28)
My ), 7* oK,k
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is a symmetric tensor, since (1/my ),, = (1/my),,. The inverse of the effective mass can

take both positive and negative values, unlike for a free electron, where it is a scalar
parameter and always positive. The effective mass incorporates the effect of the crystal lattice
on the motion of electrons; it is not a characteristic of the electron (as is its free mass) but of
the electron-lattice interaction. The effective mass is inversely proportional to the curvature of
the dispersion relation and is infinite at inflexion points, where the curvature vanishes.

If k, is an extremum (maximum or minimum) of the energy dispersion relation in the

k space, for which (VE),_,, =0, a Taylor series expansion of E around Kk, in the harmonic
approximation (in which only terms up to the second order are considered) can be written as

hZ

1 0’E
E(k) =E(ky))+= k, —k°)(k, —k%)=E, +—
( ) ( O) 2%[8kﬂ8kl,]k_ko( " ,u)( v v) 0 2 %(

1

eff

j (ku - k,?z)(kv _k‘?)

(29)

We have denoted E(k,)=E,. The above form is positively defined if the effective mass

takes only positive values, and, reducing it to the principal axes we obtain an ellipsoidal iso-
energetic surface that satisfies the equation

2 2 2 2
E(K)=E,+ | K, K Kk (30)
2 meff,l meff,2 meff,3

If two of the semiaxes of the ellipsoid are equal, for example if my , = my , the common
value of the effective mass is called transverse effective mass m;, and mg , =m, is the

longitudinal effective mass; the ellipsoid is in this case an ellipsoid of rotation. If all diagonal

components of the effective mass tensor are equal, the iso-energetic surfaces become spheres,

Mg 1 = Mg » = Mgy 3 = Mg , and the dispersion relation of the electron in the crystal is similar

to that of the free electron with mass m, except that m is replaced with the effective mass:
h?k?

E(k) = o (31)

if the reference energy is chosen such that E, = 0. The acceleration has the same direction as

the external force only along the principal axes of the ellipsoid, or for spherical iso-energetic

surfaces.
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Energy bands

We have seen that the electron energy can take multiple values for a given k in the first
Brillouin zone. The energy spectrum for the electrons in a crystal can be quantitatively
determined starting from two models: the approximation of quasi-free electrons (the weak-
binding approximation) or the approximation of quasi-bound electrons (the tight-binding
approximation). These approximations correspond to two extreme cases. In the first one it is
assumed that the state of the electron in the crystal can be modeled as a perturbed state of a
free electron, while in the second approximation, the state of the electron is a perturbed state
of a bound electron in an isolated atom, the perturbation in both cases being due to the
periodic lattice potential. The weak-binding approximation is particularly suitable for treating
the energetic spectrum of valence electrons in metals, while the tight-binding approximation
IS more suitable for semiconductor and isolating materials. In both cases the periodicity of the
crystalline lattice leads to the formation of allowed and forbidden energy bands. In the figure
below it is shown how energy bands, separated by gaps, form from atomic s and p orbitals as

the separation between atoms decreases in Si; a is the lattice constant.

)
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=
o
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The tight-binding approximation
Let us assume that the wavefunction of the Bloch electron in the crystal, v (r), can be

expressed as a linear combination of atomic wavefunctions:
wi(r) = ZCn(Dn (r-—Rp) (32)
n

where ¢, (r —R,) is the wavefunction of the atom at position R, and C, =exp(ik - R,,) since

the electron wavefunction must be invariant (up to a phase factor) at translation. The atomic

wavefunctions satisfy the Schrodinger equation for the isolated atom,

2
Hawn :(_;l_mVZ +Ua(r - Rn)](”n = Ea(”m (33)

where H, is the Hamiltonian and U, is the potential energy of an isolated atom and E, is

the corresponding energy, whereas the Schrodinger equation for the electron in the crystal is
h2
Hy  (r) = [—%VZ +V(r)}wk (r) = Expi (r) =[Ha +W )]y (1), (34)

with W(r) =V (r)-U,(r—R,) <0 the perturbation energy due to the crystal. The fact that
V(r)<U,(r—R,), and hence W (r) <0, expresses the stability of the crystal, the potential

energy in the lattice being lower than in an isolated atom. The electron energies in the crystal

and in the isolated atom are illustrated in the figure below.

O
B
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The last equation can be re-written as

2exp(ik-R)[H, +W(r) - Ec]o, =0, (35)
or
ZeXp(lk Rn)[\N(r)wn +(Ea _Ek)(on]201 (36)

which becomes, after left-side multiplication with exp(-ik - R,,)o, (r = R,,) and integration

over the crystal volume V,

ZEXp[lk ’ (Rn - Rm)][A(Rn - Rm) + (Ea - Ek)S(Rn - Rm)] =0. (37)
Here
A(Rn - Rm) = I(DFT’I (r - Rm)W (r)(on (r - Rn)dr (38)

is the exchange integral, which depends on the overlap of the atomic wavefunctions and the

crystal perturbation and defines the exchange interaction energy, and
S(Rn_Rm)zj.qor:\(r_Rm)wn(r_Rn)dr (39)
\

is the overlap integral, which depends only on the overlapping degree of the atomic
wavefunctions. If R, —R,, =R, is the translation vector between the nth and mth atoms, it

follows finally that

e _c  DAR)e(k-R)
2 S(R))exp(ik-R))

(40)

Thus, the energy of the electron in the crystal differs from the energy in an isolated atom
through a periodic function of k. Instead of a discrete energy level (as in atoms) we have now
an energy band with a width determined by the maximum and minimum values of the

perturbation term.
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In the simplifying assumption that the atomic wavefunctions are rapidly decreasing
with the distance, such that the overlap integral is negligible even for neighboring atoms, i.e.
such that

" R, =0(n=m) . 3
S(R')_{O, R %0(n=m' and hence ZIZS(Rl)exp(lkR,)_l, (41)
we obtain that
E.=E,-C-AYexp(ik-R)), (42)

I=nn

where the sum extends now only over the nearest neighbors, for which A(R,)=-A<0 for s

atomic orbitals, for which A > 0, and

~C=A(0) = [ (r =R )W (r)g, (r - R, )dr <0 (43)

is a constant (independent of k) parameter. For a simple cubic lattice with period a, in which

an atom at the origin of the coordinate system has 6 nearest neighbors at positions [[100]],

[[100]]1, [[010]], [[010]], [[001]], and [[001]],

> exp(ik - R,) = exp(ik,a) + exp(—ik,a) + exp(ik,a) + exp(-ik,a) + exp(ik;a) + exp(—ik,a)

B = 2[cos(k,a) + cos(k,a) + cos(ksa)]
(44)

E, =E, —C—-2A[cos(k,a) + cos(k,a) + cos(k;a)], (45)

which is an even function of the wavevector components; all possible energy values are
obtained for wavevector components in the first Brillouin zone, i.e. for —z/a<k;, <x/a.
The expression above indicates that, in the crystal, the energy level of the isolated atom shifts
downwards with C due to the interaction between atoms, which renders the crystal more
stable than an isolated atom, and transforms into an energy band, which is periodic in the

wavevector components and extends between E.;, and E,..,, with
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E..=E,-C-6A for k =0, (46a)
E.x =E,—C+6A, for k=xx/a. (46b)

The widths of the energy bands, AE =12A, increase with the exchange integral (with the
overlap of the atomic orbitals) and are wider for the higher discrete atomic energy levels since
the wavefunctions of the outer atomic levels are more extended in space. Different energy
bands form starting from different atomic orbitals, and an additional subscript i label these
energy bands. In the figure below (left) different energy bands are represented in the first
Brillouin zone. These bands are formed (in the increasing energy order) from atomic orbitals
for which A is positive, negative, positive, etc.

These (allowed) energy bands are separated by energy gaps (forbidden energy bands)
with widths E ;. The width of the first energy band, for example, is given by

Egl = Emin,2 - Emax,l = (Ea,z - Ea,l) - (CZ _Cl) - 6(A1 + AZ) . (47)
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If both A, and A, correspond to s states, the energy gap is determined from the extremities of

the two bands at different k values (center and edges of the first Brillouin zone), whereas the
energy gap between bands that form from s and p atomic orbitals is determined by states with

the same k: at the edges of the first Brillouin zone, for A, = A, <0 (the exchange integral is

positive) and A, = A, >0, and at the center of the first Brillouin zone if A, >0 and A <O0.

Effective mass in electronic energy bands
Let us calculate the effective electron mass at the extreme points of the energy band with the

dispersion relation E, = E, — C —2A[cos(k,a) + cos(k,a) + cos(k,a)]. Near the center of the

first Brillouin zone, when k;a <<1 and cos(k;a) =1— (k;a)*/2,

E, =E, -C—-6A+ Aa’(k/ +k? +kI) =E,;, + Aa’k?, (48)

and hence the energy depends quadratically on the wavevector, E, = E,, + #°k*/2m , as

for free electrons, with an effective mass

My =h*(VEE,) ' =h®/2Aa”. (49)

The effective mass is positive for energy bands that form from s atomic orbitals, for which
A > 0. For the particular case considered here, that of a simple cubic lattice, the iso-energetic

surfaces E, = const. in the neighborhood of the center of the first Brillouin zone are spheres.

Note that my depends on the dispersion relation, and hence on the crystal structure.

On the contrary, at the edges of the first Brillouin zone, introducing the new variables
ki'=x(z/a—-k;), such that cos(k;a) = cos(+k;'a+ z) = —cos(k;'a), the dispersion relation
can be expressed as
E. =E, —C+2A[cos(k,'a) + cos(k,"a) + cos(k;'a)] (50)

and, for k,'a <<1 and cos(k;'a) =1-(k;'a)*/2,

E. =E, —C+6A—Aa’(k," +k,"*+k;'?) = E, . — Aa°k". (51)
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The dispersion relation is again similar to that of a free electron, i.e. has the form

Ey = Epax +7°k'? [ 2my, , with an effective mass

My =h*(VEE,) ™" =—h*/2Aa?, (52)

which is negative if A > 0. An example of such a situation is represented in the figure above
(right). Note that the effective mass is negative at the center of the first Brillouin zone and
positive at its edges for energy bands that form from p atomic orbitals, for which A < 0. In

general, my > 0 in the neighborhood of the minimum energy value in the band and my < 0

near the maximum energy value in the band.

Although (51) shows that the iso-energetic surfaces are also spherical at the edges of
the first Brillouin zone, they have complicated forms at intermediate energy values, between
the center and the edges of the first Brillouin zone. Due to the periodicity of electron energy
in the k space, the iso-energetic surfaces are the same in all cells in the reciprocal space, so
that the iso-energetic surfaces are multiple connected. The same general results are obtained

in the weak-binding approximation.

Electrons and holes
If the electron in the crystal, with an electric charge —e and a positive (isotropic) effective

mass mg; >0 is placed in an electric field E, its acceleration

a=dv/dt=F/mg =—eE/my (53)

is similar in form to that of a free electron. On the other hand, in the neighborhood of the

maximum energy value in the band m. <0 and the electron equation of motion is given by

a=dv/dt=F/(—| My |) = —€E /(- | my |). (54)

The negative effective mass in the equation above has no analog for free particles. It has, as
consequence, that an electric field will decelerate the electron, instead of accelerating it. To
avoid such an awkward interpretation, it is considered that the motion of the electron with a
negative effective mass in the electric field E is equivalent with the motion of a quasi-particle
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with electric charge +e and a positive effective mass, equal to | m¢ |. This quasi-particle is

called hole. The hole is a quasi-particle since, unlike the electron, it has no physical meaning
in free space; holes exist only in crystals and reflect the behavior of valence electrons. In a
generalized sense, even the electron in the crystal can be seen as a quasi-particle endowed
with an effective mass, which is different from that of the free electron.

If the electrons in the upper part of an occupied energy band (the valence band)
acquire sufficient energy from thermal vibrations, for example, to go into an unoccupied state
in the next energy band, called conduction band, the remaining empty states can be
considered as holes. Since the empty states can be occupied by other electrons, the holes can
be seen as moving throughout the valence band, i.e. they can be regarded as free quasi-
particles in the valence band. In other words, an energy band occupied with electrons with the
exception of its upper part, can be seen as partially occupied with holes. Because the electrons
that participate at electrical and thermal conduction are those able to move (quasi-)free in the
crystal, the concept of holes allows a major simplification in the treatment of the system of
electrons in the valence band: it is no longer necessary to deal with the motion of the entire
system of electrons, but only with the motion of a much smaller number of holes.

In general, the holes in the valence band have not only an opposite electric charge, but
also a different effective mass than the electrons in the conduction band, since their dispersion
relation is different (the valence and conduction bands originate from different isolated atomic
levels). The holes move in the direction of the applied electric field, whereas electrons move

in the opposite direction!.

Density of electron states

Real crystals have finite sizes and, therefore, the solution of the Schrddinger equation for the
electrons in the crystal depends on the boundary conditions. As for phonons, we assume that
in large crystals the surface phenomena do not influence significantly the electron dynamics
inside the crystal, and hence use the cyclic (Born-Karman) boundary conditions. In the
orthorhombic symmetry, for example, if the dimensions of the crystal along the orthogonal
Cartesian coordinates x;, i = 1,23 (X, =X, X, =Y, X; =2) are denoted by L;, the cyclic

conditions impose that

Wi (X1, X2, X3) =W (X + Ly, X, X3) = @i (Xg, Xo + Ly, X3) = Wi (Xg, X5, X5 + L)

(55)
=y (X + L, X, + Ly, Xs + L)



Electron dynamics 17

or, since y (r) =u, (r)exp(ik - r) with u, (r) the same in all lattice cells,

ki Li = 27zmi y ki = 27zmi / Li (56)

with m; integer numbers. Similarly, in a finite crystal with N; atoms along the i direction,

such that L; = N;a;, with a; the respective lattice constants, it follows that

_ 27am;

ki =
N;a;

, (57)

where, for wavevectors in the first Brillouin zone, the integers m; can take only N; values in

the intervals

—Ni/ZSmi<Ni/2. (58)

Thus, for a simple lattice (with one atom in the basis), the number of distinct energy states of
electrons in an allowed energy band is N = N;N,N,, and these states can be occupied by 2N

electrons because, according to the Pauli principle for fermions, only two electrons with
opposite spins can occupy an energy state characterized by a given k. In large crystals the
distance between energy levels is quite small and the energy band is approximated as a
(quasi-)continuous function of k, case in which any sum over states in the k space can be
replaced (as in the case of phonons) by an integral over the first Brillouin zone. More

precisely, for any function F(k),

v v

SF(k)= PR S F(k)ak = PR lst[Bi:(k)dk (59)
where

AK = Ak, Ak, Ak = @z)" _ (@7 (60)

LLL V

is the volume in k space occupied by a distinct electron state.
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In particular, the density of states in the k space, defined as the number of electron

states with a given spin orientation, dN,, in the volume element dk , is given by

Ny _ 1 _ vV (61)
dk Ak (27)°

or

v dk .

N el =
(27)° 55,

The density of states per unit volume, defined as the number of states per unit volume with a

given spin orientation in the energy interval dE is then

1 dN d 1
D(E)=——2=— dk |, 62

E)=V & dE((Zﬁ)?’V{ ] ©2)
where Vg is the volume in k space between the iso-energetic surfaces E(k) and E(k) +dE .
As for phonons, dk =dSdk, =dS(dE/|VE|) with dS the infinitesimal element on the

E(k) = const. surface and dk, normal to this surface, and the expression above simplifies to

1 ds
D(E) = | , (63)
(272') E (k)=const | VkE |
which becomes
1 mgkK Mer K  (2Mgy )*" 1/2
D(E):W hz dl‘ko = 2”2h2 = 47[2,’;[3 (E—Eo) (64)
k

for spherical iso-energetic surfaces, for which E(k)=E, +#°k?*/2m, . In this case

|V.E|=%%k/my and dS =k?dQ,, with dQ, the element of solid angle.
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Classification of solid state materials

One of the most important achievements of the energy band theory is the possibility to
classify solid state materials in metals, isolators, and semiconductors. This classification is not
based on the structure of the energy bands, which is quite the same in all materials, but on the
degree of occupation of these bands. The available number of energy states is occupied by
electrons in agreement with the Pauli exclusion principle. More precisely, at low temperatures
(in principle, at T = 0 K) the states are occupied in the order of increasing energy value, such
that only two electrons (with opposite spins) are allowed on an energy state E with a given k
value. The available states are occupied by electrons up to an energy level called Fermi

energy, or Fermi level E.. Because electrons are fermions, their quantum statistical

distribution function at temperature T is described by the Fermi-Dirac formula

1

- (65)
1+exp[(E—Eg)/kgT]

f(E)

with kg the Boltzmann constant. The temperature dependence of the Fermi-Dirac distribution

function is illustrated in the figure below. At T = 0 K, the distribution is a step function, equal

to 1 for energies smaller than the Fermi energy, and equal to O otherwise.
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Two situations can exist:

1) at low temperatures, T = 0 K, the Fermi level is inside an energy band (see the figure
below, left), i.e. electrons occupy partially the last energy band. The material is then a
metal and can easily conduct electricity since the electrons in the vicinity of E,
accelerated by a small applied electric field, can occupy available empty states with

higher energy.
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(1] /a k 0 T/a k

2) at low temperatures, T = 0 K, the electrons occupy completely a number of energy bands,
so that the Fermi level is inside the energy gap between the last occupied band, called
valence band, and the following empty band, called conduction band (see the figure
above, right). In this case a small electric field does not provide sufficient energy for the
electron to jump into empty states in the higher energy band, and therefore no electric
current can flow through the material. We deal in this situation with a dielectric.

At higher temperatures, T # 0 K, the dielectric materials, in turn, can be either isolators
or semiconductors, depending on the width of the energy gap between the valence and

conduction bands. If E, < 3 eV, thermal fluctuations can excite electrons from the valence to

the conduction band, where they can contribute to electrical conduction, and the material is in
this case a semiconductor. As a result, in (undoped) semiconductors the number of electrons
in the conduction band is equal to the number of holes in the valence band. When an applied
electric field is applied, the current has two contributions: one from electrons and the other

from holes, which are drifted in opposite directions. In isolators, E, > 3 eV and no electrical

conduction exists at moderate temperatures or electric fields.

Because the total number of electrons in a crystal with N unit cells and s atoms in the
basis, each atom having Z electrons, is NsZ, and an energy band can accommodate 2N
electrons, it follows that the number of occupied energy bands is NsZ /2N =sZ /2. Then, in
simple lattices with s = 1, there is always a partially occupied band for odd Z values and these
materials should be metals. This is the case of monovalent alkaline metals (Li, Na, K, Cs, Rb)
and noble metals (Cu, Au, Ag), which have only one valence electron. However, it is not true
that materials with s = 1 and even Z are always dielectrics. For example, bivalent elements

such as Be, Mg, Ca, Sr, B, are metals. The explanation is that, in these cases, the completely
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empty conduction band overlaps the completely occupied valence band over a small energy
interval (see the figure below). The electrical conductivity is poorer, though, if the overlap is
slight. Note that in genuine dielectric materials, at T = 0 K there is no overlap between the

conduction and valence bands.

0 m/a k

Because at the top of partially occupied energy bands the charge carriers are holes, a
mixed conduction (electrons and holes) is expected when the conduction and valence bands
overlap over a narrow energy range. The materials that have a mixed conduction at T = 0 K
are called semimetals; they differ from metals in that in metals the conduction is always due
to electrons only. The semimetals have more complicated band structures than metals and
dielectrics. Examples of semimetals are As, Sb, Bi; these materials have an electrical
conductivity with up to four orders of magnitude smaller than in metals.

In metals, the iso-energetic surface in the reciprocal space defined at T = 0 K through
E(k) = E; (66)

is called Fermi surface. The Fermi surface separates the states with a low occupation density
from those with a high occupation density and determines the physical properties of metals,
especially the electrical properties, in which only electrons within an energy interval of the
order of kgT around the Fermi energy participate. Examples of simple and complex Fermi
surfaces are given in the figures below. Note that in Ni, which has strong magnetic properties,

the Fermi surfaces for electrons with opposite spins are different.
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Statistics of charge carriers

The statistic properties of charge carriers are determined when these are in
statistical/thermodynamical equilibrium with the crystalline lattice. To find these properties
we need to know the distribution function and the density of states of electrons and holes.

For a general system of electrons characterized by a distribution function (probability

of occupying available electronic states) f (E), the concentration of electrons is

1 2 2
n_vk%f(E(k))_vZk:f(E(k))_Wjf(E(k))dk o

2 f(E)dSdE _ Em

T vl OPEE

where the factor 2 originates from the sum over the spin states with index o. The density of

electronic states for spherical iso-energetic surfaces is given by

(Zmeff )3/2

472_2h3 (E_ EO)llz' (2)

D(E) =

Because there are differences in the distribution function of charge carriers in metals and

semiconductors, in the following we treat these cases separately.

Statistics of electrons in metals

In metals the Fermi energy is inside an energy band and one can define the Fermi surface. The
density of electrons in metals with spherical iso-energetic surfaces is given by (2) with
E, =0 and, at a finite temperature T, the electrons occupy the energy states according to the

Fermi-Dirac distribution function

1

=1 : ©)
+exp[(E—-Er)/kgT]

f(E)

In this case, the electron concentration becomes
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(zme )3/2 0 E1/2dE
= (4)

2727° 3 expl(E —Eg)/KgT]+1

if the upper limit of the integral is approximated with co. This approximation is justified since

the integrand decreases rapidly. With the change of variables x =E/kgT , y=E¢ /kgT, we

finally obtain
(2my ks T)¥?
=#Fﬂ2(y) (5)
where
® X“dx
F 6
. (Y) = !exp(x )1 (6)

are the Fermi-Dirac integrals. They are evaluated numerically. Note that the same result is
obtained for an arbitrary E,. In this case, in (4) E, appears in the numerator of the integrand
and in the lower limit of the integral, but disappears in the final result (equations (5) and (6)),
if the new variables are chosen as (E —E,)/kgT =X, (Ef —Ey)/kgT =.

The temperature dependence of the Fermi-Dirac distribution function is represented in

the figure below. At all temperatures, f(Eg)=1/2 .
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At T = 0 K, where the Fermi-Dirac distribution is a Heaviside function, i.e.
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the concentration of electrons in metals is

3/2
n= (2meff kBT)3/2 Eg ]‘kiz/zdx _ (Zmeff kBT)3/2 g EE _ (2meff )3/2 (Eo)s/z (8)
270 g 220 3\ kT 3z’n®
with E? the Fermi energy level at T =0 K, or
hZ 37Z_Zn 2/3 h2k2
EO — ( ) _ F 9)

2m, 2my;

1/3

where ke = (37°n)"? is the Fermi wavenumber. From (9) it follows that the Fermi energy at

T = 0 increases as the electron concentration increases, the system of electrons being in the
fundamental state if the Fermi sphere is completely occupied and in an excited state if
electrons occupy states with | K [> k.

For finite but low temperatures, y=E;/kgT >>1, and spherical iso-energetic

surfaces, the Fermi-Dirac integrals can be approximated with

att 7% a(a+1
F.(Y) :h[]ﬂ'?%) (10)
and so
(2my )7 (kT Y
n:#EE’Z 1+% EB . (11)
=

On the other hand, the electron concentration in metals does not depend on temperature
because an increase in T affects only the thermal excitation of electrons on higher energy

levels. It follows thus that the Fermi level must depend on temperature and, from
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EO 3/2 EO 3/2
EEIZZ (ZF) - ~ (ZF) = (12)
147 KeT 1+ 7 kB;r
8 | E, 8 | EC
we obtain
72 (keT ?
£ _E 1__( 5 ] | (13)
" F[ 12| E?

This temperature dependence is very weak and the Fermi energy is, in the first approximation,

almost constant as T varies.

Statistics of charge carriers in semiconductors

In semiconductors the Fermi level is situated between the valence and the conduction band,
which are separated by an energy gap. At T = 0 K, all energy states below E  are occupied
with electrons according to the Pauli principle, i.e. according to the Fermi-Dirac distribution
function, and all states above the Fermi level are empty. Because the holes in semiconductors
can be viewed as states not occupied by electrons, the probability that a state k, with energy

E(k) is occupied by a hole (i.e. is empty for electrons) is

1 1
C1+exp[(E—E)/ksT] 1+exp[(Er —E)/ksT]

1- f(E) =1 (14)

If E- /kgT >>1 the Fermi-Dirac distribution function has almost the step-function

form characteristic for T = 0 K. In this case the distribution function is called degenerate and

is encountered in materials with large concentrations of electrons, such as metals and heavily
doped semiconductors. On the contrary, when Ep/kgT <<-1 or —Eg/kgT >>1, the

exponential term in the Fermi-Dirac distribution function is much larger than unity and the

distribution function resembles the classical Maxwell-Boltzmann distribution,

f,(E) = exp(E. /KsT)exp(-E /KkT) <<1, (15)
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which can be seen as the “tail” of the Fermi-Dirac distribution. This case corresponds to low
electron concentrations, in particular to undoped (intrinsic) semiconductors, in which the
electron concentration is with few orders of magnitude smaller than in metals. The Maxwell-

Boltzmann distribution function is called nondegenerate.

Intrinsic semiconductors
The density of states for electrons in an intrinsic semiconductor is similar to that in metals (for

an arbitrary E;) and is found to be

m,k  (2m,)*?
27°h%  Arn*hm®

D, (E) = (E-E)" (16)
for spherical iso-energetic surfaces E(k) = E. + #°k®/2m, , where E, is the minimum energy
in the conduction band, and m, is the effective mass of electrons in the vicinity of this

minimum energy. In an analogous manner, the density of states for the holes with effective

mass m, in the valence band is found to be

mpk _ (2m,)*”
27°0°  Axch®

Dp (E) = (Ev - E)llzv (17)
where E, is the maximum energy in the valence band. This expression was found taking into

account that the hole energy increases in the opposite direction as that of the electron. Both
electron and hole density of states must be multiplied with 2 if the spin degeneracy is
included.

However, the dispersion relation is not always spherical. For example, the conduction

band of Ge and Si are ellipsoidal iso-energetic surfaces with N, equivalent minima arranged
symmetrically in the first Brillouin zone (N, = 4 for Ge and N, = 6 for Si). This case can be

reduced to that of spherical iso-energetic surfaces if, in the neighborhood of these minima

situated at k,, the dispersion relation

2 2 2 2
£ o, + 1 k) | (ke —k)® | (ks —kos) } 18)
2 My My, My3



Statistics of charge carriers 6

is transformed into a spherical dispersion relation

2
Ek' = EC + h
2m

(k2 4k, kg ) (19)
by a change of variables k; —k, =k;'s/m,;/m,". The figures below illustrate the iso-

energetic surfaces in Si (left) and Ge (right). There are 4 complete ellipsoids (8 half-

ellipsoids) in the first Brillouin zone in Ge.

e

Then, in the calculation of the density of states we must account for the fact that
dk = dk,dk,dk, =[(m,,m,,m,5)"?/m,*"?1dk", from which it follows that the density of

states becomes

(Zmn I)3/2 (mnlmnzmn:%)l/2

Ar’h® mn.s/z (E_Ec)llz' (20)

D, (E) =

Because there are N, equivalent minima/ellipsoids, the density of states is given by

(2mc)3/2

47[2h3 (E - Ec)llz (21)

D, (E) =

where the effective mass of the density of states in the conduction band is defined as

m, = Nequs(mnlmnzmnS)llg' (22)
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Concentration of charge carriers and Fermi energy
In an intrinsic (undoped) semiconductor, the requirement of electrical neutrality imposes the

same concentration for both electrons and holes,

n=p. (23)

In intrinsic semiconductors the concentrations of charge carriers are small (n and p are
smaller with several orders of magnitude than the electron concentration in metals), so that
the available energy states are no longer occupied according to the Fermi-Dirac distribution
function, as in metals, but according to the classical Maxwell-Boltzmann distribution. So, the
electron an hole concentrations in intrinsic semiconductors with spherical iso-energetic

surfaces are given by

Emax 2mnk T 3/2
n=2 [ f(E)D,(E)dE :gﬁ/z(yc),

_(2m kg T)*?
272h° b=

272_27/_13 Fl/Z(yV) (24)

Emin

with y, =(Er —E.)/kgT, y, =(E, —Eg)/KgT . The expressions are similar to that found in
metals, with x, =(E—-E.)/kgT, x, =(E, —E)/kgT , respectively, except that in this case

the Fermi-Dirac integrals become

F, () = exp(y) [ x* exp(—x)dx, (25)

since we use the Maxwell-Boltzmann distribution. Because F,,,(y) = (+/7 /2)exp(y),

3/2 _ — —
n= (27zmnk331;) exp S N, exp e B N exp| - S Ee |, (26)
A°h kBT kBT kBT
2 k T 3/2 _ — -
P _ (&, 383) exp S | N, exp S E N, exp| — Be B (27)
Ar°h kBT kBT kBT
where
3/2 2 k T 3/2
N, = @makeT)*E o @amke )T (28)

47°h® 47°m®
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are the effective densities of states in the conduction and valence bands, respectively. From
the relations above it follows that, unlike the degenerate case in metals, the concentrations of
electrons and holes in non-degenerate semiconductors depend strongly on temperature.

The Fermi energy is determined from the neutrality condition, i.e. from

AE

m3'? exp[%} =m3? exp[%} . (29)
B

B

The result is

E, = e : E, +%kBT In(m—:J (30)
and, at T = 0 K, the Fermi level is at the middle of the energy gap: Er =(E. + E,)/2. As the
temperature increases, the Fermi level shifts towards the energy band with the smaller
effective mass (see the figure above); it remains at the centre of the energy gap, irrespective
of temperature, only if m, =m, . A special situation is encountered in semiconductors with a
small energy gap width E, =E, - E, and m,/m, >>1 or m,/m, <<1 (the first situation is
much more common). In this case, the Fermi level can enter inside the band with the smaller
effective mass, and the semiconductor becomes degenerate at even moderate temperatures.
An example of such a material is InSb, for which E; =0.18 eV and m,/m, =10.

It should be emphasized that, starting from the expression of the electron

concentration in semiconductors, it follows that the conditions of applicability of the

Maxwell-Boltzmann statistics is

_ 323
exp Er —E.|___4zh nm <<1. (31)
KgT (272m kgT)

If the energy reference is chosen such that E, =0, exp(Er /kgT) <<1 for small electron
concentrations, high temperature, and high effective masses. On the contrary, if these
conditions are not satisfied and exp(Er /kgT) >>1, i.e. if the electron concentration is high,
the temperature is low, and the effective mass is small, the electron gas is degenerate, and the
criterion above is known as the degeneracy criterion. Electrons in metals satisfy the

degeneracy criterion.
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The intrinsic concentration of carriers can be defined as

N =n=p=ynp =/N.N, exp[—

Eg
2k T 27h*

k 3/2 E
JzZ( B) (mnmp)g"‘T?”zexp(—ZkQTj. (32)

B

This concentration does not depend on the Fermi level, and its temperature dependence is

summarized in the formula (see figure)

N, (T) oc T32 exp(— ZEQ ] : (33)

and the band gap can be determined from the slope of the figure
at the right side. For a large class of semiconductors, the energy

gap width depends on temperature as: E,(T) =E,, —aT .

Extrinsic semiconductors

In(ny/T ¥2)
A

» 1/T

An extrinsic semiconductor is a doped semiconductor, i.e. it contains donor and/or acceptor

impurities In donor impurities, the number of valence electrons is higher than in the host

material, and the extra electrons are not involved in binding with the atoms of the host

material; they are still localized around the donor impurity but can easily participate at the

process of charge carrier transport when an electric field is applied. The number of free

electrons that contribute to electrical conduction increases in the presence of donor impurities.

On the contrary, acceptor impurities have a smaller number of valence electrons than the host

material, and their stable binding with host atoms requires an additional electron from the host

material. As a result, the number of holes increases when acceptor impurities are present.

=0-0-0=0-
~9-0=0-0-
~0-0-0-0-

~0-0-0-0-
~O-@o-0-
~9-0-0-0-
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For Si (see the schematic figures above), which forms covalent bonds with other four atoms,
P is a donor impurity since it has five valence electrons, and B is an acceptor impurity
because it has only three valence electrons. Donor and/or acceptor impurities are purposefully
introduced into a host semiconductor to increase its electrical conduction. On the other hand,
the unintentional doping of a crystal introduces defects into the crystalline lattice and
degrades its electrical performances. Therefore, doping is a process that should be carefully
controlled. The donor and acceptor impurities have discrete energy levels inside the bandgap
of the host material, which can be occupied by electrons and, respectively, holes. The charge
carriers on the impurity levels are localized around donors and acceptors and are not free to
move around the host crystal unless the impurities are ionized, i.e. the electrons on donor
energy levels are promoted (by thermal energy or applied electric fields) into the conduction

band and the holes on acceptor levels are excited into the valence band of the host material.

Let us denote by N, and N, the concentration of donor and acceptor impurities, by
Ng and N? the concentrations of electrons and holes localized on the donors and acceptors,
respectively, i.e. the concentrations of neutral donors and acceptors, and by Nj =N, — N¢

and N, = N, — N? the concentrations of the ionized impurities. The ionization of donors and

acceptors leads to an increase of the number of free charge carriers with respect to the
intrinsic semiconductor case. If n and p are the total concentrations of free electrons and

holes, the condition of charge neutrality is

n+N; =p+N,, (34a)
or
n+Ny+NJ=p+Ng+N2. (34b)

Unlike in the case of free charge carriers, the distribution function of the electrons localized
on donor impurities and that of the holes localized on acceptor impurities is not the Fermi-
Dirac function, which is valid when two electrons with opposite spins can occupy an energy
level, according to the Pauli principle. The reason is that only a single electron can occupy an
energy level on an impurity atom. If another electron is brought on this level, its energy varies

significantly due to the strong electrostatic interaction between electrons.
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According to the Fermi-Dirac distribution function, the ratio between the probability
that the state is occupied and the probability that the state is empty is,

f(E) ([ E-E
m‘{ Tt j (5

On the contrary, since only one electron can exist on an impurity level, the same ratio is now

f,(E) _E-E¢
1—fd(E)‘zeXp( kBTJ )

for electrons on donors (the level is occupied twice as fast), or

1
fa (E) T 1+ W/ 2)exp[(E—E,.)/k,T]’ 0
and
. 1 (38)
T 14 (U 2)exp[(Ee —E)/kgT]

for holes on acceptor impurities. In general, the factor (1/2) in front of the exponential term
in the denominator should be replaced by (1/g), with g the degeneracy of the energy level.

Taking into account that the density of states of the discrete donor/acceptor energy
levels E; are

D.(E)=N,5(E-E,), i=da (39)

the concentrations of the electrons localized on the donors and of holes localized on acceptors
are given by

N = [ f, (E)Dq (E)dE = N,

, (40)
1 E, —Er
1+ —exp| ——

2 ( keT j
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Ny = f.(E)D,(E)dE = . (41)

N
1+1exp Ee—E,
2 KT

and the neutrality condition becomes

N, + Ny + N, exp Ee—Ee |
1 Ed _EF kBT
1+ ~expl 4%
(42)
Ny + N. +N, exp E-Er
1 EF _Ea kBT
1+ ~exp| ——2
2 KT

from which one can determine the position of the Fermi energy level. The Fermi level in

extrinsic semiconductors is different than in intrinsic semiconductors!

Extrinsic semiconductors with only one impurity type

Let us consider that the semiconductor is nondegenerate and has only donor impurities with

concentration N, = NJ +N_ . Inthiscase N, =0, N2 =0, and (34b) can be expressed as

n+NS=p+Ny, (43)

with n and p determined as above, with the help of the Maxwell-Boltzmann statistics. The
electrons in the conduction band are generated either through the ionization of donor
impurities (through the transition from the donor level to an energy level in the conduction

band), process that requires the energy E, = E. —E, (equal to the ionization energy of the

donor impurity), or through the ionization of the atoms in the crystal (the transition of an
electron from the valence in the conduction band), process that requires an energy equal to

E,. Because Ey << E,, the contribution of the two processes differs as a function of the

g
temperature. More precisely, at low temperatures the dominant process is the ionization of
impurities, whereas at high temperatures the electron transitions between the valence and
conduction bands prevail. We have extrinsic conduction at low temperatures, and intrinsic

conduction at high temperatures.
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1) Extrinsic conduction regime
At low temperatures, at which the conduction electrons originate from the ionization of donor

impurities, for a given donor concentration N, >> p the neutrality condition becomes

n+NJ =N, or

Ncexp[%J: N, — n NdE = (44)
B d — F
o )

1+ —ex
U kT
This is a second order equation for exp(E /kgT), which can be easily solved by introducing

the variables x =exp[(Er —E4)/kgT], y=(N4/N.)exp[(E. —E,)/kgT]. In terms of these

variables (44) can be written as 2x* + x —y = 0, from which it follows that

1 N E.-E
E- =E, +koTIn = [1+8—Lexp| —=——% |-1]]. 45
F d B {4[\/ N, p( KT ] J] (45)

For extremely low temperatures, for which 8(N, / N.)exp[(E, —E4)/kgT]>>1, (45)

can be approximated as Er = E4 +KkgT In\/(Nd I2N,)exp[(E. —E4)/kgT], or

EF:EC+Ed+kBT In N, | (46)
2 2 2N,

which reduces to

E, = ¢ ; 5 (47)

at T = 0 K. The temperature dependence of the Fermi level can be determined taking into
account that N, = (27m,kgT)¥? /(473n%) o« T*'2. At temperatures of only few K, when
2N, < N4, E¢ shifts towards the conduction band but, as the temperatures increases until
2N, = N, the Fermi level takes again the value at T = 0 K. Thus, in this temperature interval

Er reaches a maximum value at a temperature
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213 4/3
N “7zh

Tome = &0
" 2M3ekgm,

(48)

determined from the condition dE; /dT =0, or In(N,/2N,)=3/2. In (48) e is not the

electric charge, but the basis of the natural logarithm!
The maximum value of the Fermi energy is found to be

E.+E, 37 n*?

/
5 +27’3em NZ'®. (49)

EF,max = EF (Tmax) =

The Fermi level can even reach the minimum value of the conduction band, i.e. E¢ .., = E,

for a critical concentration impurity

3/2
em,
[ j Es?. (50)

At this critical concentration the semiconductor becomes degenerate. The temperature

dependence of the Fermi level is represented in the figure below, left.

S Ego/2 In(n/T %)
A

=
_-.==:::%::::_i ______________ Eg/2
124 3
— .
T, T, > T T

A further increase in temperature, which corresponds to 2N, > N,, leads to a
decrease in the Fermi level value towards E,, until this value is reached for a so-called
saturation temperature T,. The temperature interval 0 <T < T, is called the weak ionization

region (see region 1 in the figure above). In this temperature interval, from (46) it follows that
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_ - E
n=N,exp| — Eo —Ee |_ [NcNq exp Eq —Ec | [NeNy exp| - —2 |, (51)
kgT 2 2k, T 2 2k, T

i.e. noc N3'2, and, since N, oc T*?, the temperature dependence of the electron concentration

is nocT¥ exp(—E4q /2kgT) . The ionization energy of the donor impurities, E, can thus be

determined from the slope of the In(n/T**) = f (1/T) plot (see the figure above, right).
At still higher temperatures, for which 8(N, /N.)exp[(E. — E4)/kgT] <<1, (45) can
be approximated as Er = E; + kg T In{(N, /N.)exp[(E. — E4)/kgT]}, or

E. =E, +kgTIn(N, /N,), (52)

the logarithm being negative since N, >> N,. Thus, the Fermi energy decreases as the

temperature increases and becomes lower than E,, level reached at the saturation temperature

Eg

T, = . (53)
Kg IN[N¢(T)/ Ny]
In this temperature interval the electron concentration is given by (see (52))
E.-E
n=N,exp| ———F |= N, 54
p( Ko T j d (54)

result that shows that the donor impurities are totally ionized, and the electron concentration

is independent of temperature for T >T,. The regime is an exhausting regime for donor

impurities and in the figure above is indicated as region 2.

1) Intrinsic conduction regime

For high-enough temperatures the hole concentration starts to increase and becomes
comparable with the electron concentration. In particular, if p>> N the neutrality condition
(43) can be written as n=p+N,. In this regime of high temperatures the donors are

completely ionized, the charge carriers originating from the ionization of the host semicon-
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ductor material. For a nondegenerate semiconductor p=n?/n, which introduced in the

neutrality condition leads to

n>-Ny,n-n’>=0, (55)

the solution of this equation being

2 2
n=Nol1y neal | ponzin-= 20, . (56)
2 Nd n-z
Ng| 1+ [1+4 5
N

Because at high temperatures the host material is the main source of charge carriers, the
expressions for electron and hole concentrations in intrinsic semiconductors apply, and the

Fermi energy level, determined from n= N_exp[(Er — E.)/kgT], with n from (56), is

2 E
Er =E, +keTIn[ 29 |14 144" || =B, 1 kT In| 2 14 144NN genf Zo |||
2N, N 2N, N KT

(57)
The expression above can be studied in two extreme situations:
1) 4n’ /N7 <<1, case in which
n:Nd,p=ni2/Nd, (58)
and (in agreement with our previous results for the totally ionized/exhausted impurities)
Ng
Er =E, +kgTIn il (59)

2) 4n? IN; >>1, case in which

n=p=n, (60)
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and (as for the intrinsic semiconductor)

m
g, = BB KT [N} BBy 3y 1y Mo ), (61)
N, 2 4 m,

The temperature dependence of the Fermi level in this region of intrinsic conduction is
indicated in the figure above (see region 3). At high-enough temperatures the increase of the
electron concentration in the conduction band originates from electron transitions from the
valence band. The transition temperature from the exhausting regime of impurities to the

region of intrinsic conduction can be determined from (58) and (60), i.e. from n;, = N, and is

found to be

T, - S . 62)
Kg IN[N ()N, (T;) / N§1]

Summarizing, the temperature dependence of the electron concentration shows three
distinct regions (see the figures below). The logarithmic dependence of the concentration on
the inverse of the temperature can be approximated with a straight line in regions 1 and 3 (see
figure below, left) if we neglect the influence of the factors T*'? and T**, respectively, in

comparison with the exponentials terms, and the parameters E;, and E,, can be determined

from the corresponding slopes. On the contrary, in region 2 the electron concentration is

approximately constant, since the donor impurities are exhausted.

AInn

Na

freeze-out

l | .. intrinsic
.extnnsw:

: I >'|'
> 1/T TS Ti

UT; 1T
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Electronic specific heat in metals

In metals, the electronic specific heat per unit volume, calculated at constant volume, is

defined as
dE,,
=__¢ 1
el dT ( )
where the energy per unit volume of the system of non-interacting electrons is given by
1 2 R
Ea = sz E(k) f(E(K)) = V; E(k) f (E(k)) = 2 Ef (E)D(E)dE, )
e 0

with D(E) = (2m,; )*'?E"Y?/4x*h® (see the course on electron statistics in metals). In the

normalized coordinates E/ksT = x, Er /kgT =y and for spherical iso-energetic surfaces the

energy per unit volume becomes

E _ (Zmeﬁ )3/2 ]? Eglsz _ (Zmeff kBT)glszT F (y) — nk T F3/2(y) (3)
T 22 L exp[(E—E;)/kgT]+1 273 3 ® Fl(y)’
where
*® X% dx
F 4
L (Y) = {exp(x )1 (4)

are the Fermi-Dirac integrals. The last equality in (3) follows because (see the course on the

statistics of electrons in metals)

_ (2myikeT)™?

227 h Fio(y). )

So, taking into account that
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dF, (y)/dy = aF,(y), (6)

the electronic heat capacity can be expressed as

(Zmeff kBT)3/2 kB
27%h®

(Zmeﬁ kBT)SlszT dF3/2 d_y _ 3

Fara(y) + _nks(

27’0’ dy dT 2 e

3 Fia(y) ﬁ] .
)

S
2

el

a+l 2 2 2
At low temperatures, from Fa(y)zy— 1+ﬁ—a(a2+1) , Er =E2[1-2- kB;r and
a+l 6 vy 12\ Ef

y = E¢ /kgT >>1 we find that

2 2 2 0 2 2
Fa2(Y) :§y 1+ 5 3B 7 kBoT _3Ep |, 57 kBOT (8a)
Fu.(y) 5 2y S5kgT 2 \ Eg 5kgT 12 \ Ef
0 2 2
Tﬂ:i[—dEF —Ej:— Be 11,7 kB;r (8b)
dT kg \ dT T kg T 12\ Ef
and so
2 2
Ce zénksﬂ_kBI =Cq ﬂ.—lv )
2 3 Ef 3 T¢

where the Fermi temperature is a parameter defined as T = E2 /ks and C = (3/2)nkg is

the classical electronic specific heat. CS' is obtained using the same general expression (7) as
above, but with the Fermi-Dirac distribution function replaced by the Maxwell-Boltzmann

distribution, case in which

F. (y) = [; x exp[~(x - y)]ldx, (10a)
Fa2(Y)/ Fu2(y) =3/2, (10b)
dEq /dT =E /T —3/2kg, (10c)

Tdy /dT =-3/2. (10d)
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The equality (10c) follows from (5) and the requirement that dn/dT =0, considering that in
the nondegenerate case dF,(y)/dT =(dF,/dy)(dy/dT)=(dy/dT)F,(y). Then, (10d) is

obtained from (10c) and (8b), so that, finally, C§ = (3/2)nks.
The ratio T /T can be seen as the fraction of excited electrons at temperature T, the

other electrons being “frozen” due to the Pauli principle. The value of this ratio at room
temperature is typically 107,
The linear relation between the electronic specific heat in metals and temperature is

generally expressed as

Cy =T, (11)

where y = z°nki /2E? is known as the Sommerfeld constant. Although this constant has
been derived using the approximation of spherical iso-energetic surfaces, its value remains the
same for general surfaces.

Taking into account also the phononic contribution to the specific heat (see the lecture

on phononic heat capacity), at low temperatures the specific heat is given by (see the figure

below)
CV :Ce|+Cph:]/T+aT3, (12)
b
,LE” lattice Cv~ v
=
)
k)
2
g Cy~T
[oN
8 electrons
=
[e}]
i -
0 >
0 temperature (arb. units)
where
127° k
a= T nion 6_2 (13)
D
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with n,,, the ion concentration. The electronic term dominates at very low temperatures, for
which y >aT?, i.e. for

T _1[sne,

@, 27\6n, T

(14)

In particular, the Debye temperature can be determined from the slope of the curve

C,/T=y+aT?=f(T?) at very low temperatures, while y is determined from the value of

this dependence at T = 0. The values of y for several metals are given in the table below.

Metal | »-10™* (J/mol-K?) | Metal | »-107* (3/mol-K?) | Metal | »-10~* (3/mol-K?)
Li 17 Ag 6.6 Zn 6.5
Na 17 Au 7.3 Al 13,5
K 20 Be 2.2 Fe 49.8
Cu 6.9 Mg 13.5 Co 47.3
Ca 27.3 Ba 27 Ni 70.2

Carrier specific heat in intrinsic semiconductors

In a nondegenerate intrinsic semiconductor with spherical iso-energetic surfaces, the energies

of the system of electrons and holes are given by, respectively (see (3) and (10b))

F(y) 3 3
Eoq =nkyT 2222 = Znk, T, E, == pkgT. 15
I B F.(y) 2 B h 2p B (15)

The total energy of charge carriers is however equal to
3 3
E.w = EnkBT +nE, +E pkgT (16)

since the free electrons in the conduction band have an additional potential energy of nE,.

Because in an intrinsic semiconductor n= p =n;, with n; the intrinsic carrier concentration,

(16) can be written as
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Ecarr =N, (3kBT + Eg) ) (17)

and the carrier specific heat is

d EC&I’I’

Ccarr =
dT

:%(BkBT +E,)+3nks, (18)

when the weak temperature dependence of the bandgap is neglected. Because

E E
N, =+/N.N, exp(— g jocT"”Zexp(— g ] (19)

2k, T 2K,

it follows that

- E
d_nf, & (20)
aT 2T kT
and
. E, ) E E, )’
C. =MiKels B0 | Lani cnkg|2i3—e L Eo ) | 1)
2 KT 2 KT 2\ keT

This expression is valid if E; >kgT, since otherwise the degeneracy of the system of
electrons and holes must be taken into account. From (21) it follows that at low temperatures
the contribution of charge carriers to the specific heat in an intrinsic semiconductor can be

neglected, due to the exponential temperature dependence of n;.

In an extrinsic semiconductor the specific heat of charge carriers can be calculated in a

similar manner. More precisely, in (16) one must introduce the correct concentrations of free
carriers in all conduction regimes, and must account for their specific distribution function
and temperature dependence. The carrier specific heat of free electrons and holes is found,
then, to depend on both the concentration of donor and acceptor ions and of their energy

levels. At low temperatures this contribution to the specific heat is, again, negligible.
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Boltzmann kinetic equation
When an electric or a magnetic field is applied on a crystal, the displacement of charge
carriers induces transport (or kinetic) phenomena. The distribution function of charge carriers

with energy E(k) = E, inequilibrium is described by the Fermi-Dirac function

1

B =17 exp[(E, —E.)/ksT]’

1)

On the other hand, in the presence of external fields, the system of charge carriers is no longer

in equilibrium and the corresponding distribution function f (k,r,t) depends, in general, on

spatial coordinates and time.
In a semiclassical treatment, the number of particles that follow a certain trajectory is

conserved in the absence of scattering processes, so that df /dt=0. However,

scattering/collision processes of electrons on phonons, impurities or defects in the crystalline
lattice are unavoidable, so that the total derivative of the distribution function does not vanish
any more, but is equal to the variation of the distribution function due to collisions. More

precisely,

£:i+ir+ik:(ij , (2)
at ot or ok o).,

or

ﬂz(@j v, i-Eov g @3)
ot ot )eon fi

where v is the electron velocity in the crystal and F =dp/dt = adk / dt is the external force.
In a stationary state, when the distribution function is independent of time, of /ot =0, and, if
we consider the effect of the Lorentz force F =—e(E +vx B) only, we obtain the kinetic

Boltzmann equation
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v-v,f—%(waB)-kaz(i] . ()
coll

To find the distribution function f(k,r,t) from this equation it is necessary to know the

collision term in the right-hand-side. This is a difficult problem, which can be simplified by

introducing the relaxation time z(k), which describes the return to equilibrium of the

distribution function when the external fields are switched off;

o) f-1,
_(choll - T(k) , (5)

or

f—fo =(f = fo) o exp[-t/z(K)]. (6)

The relaxation time is thus the interval after which the change in the equilibrium distribution
function decreases e times after the external fields are turned off. The introduction of the
relaxation time parameter is possible when the collision processes are elastic, i.e. when the
energy of charge carriers is not modified at scattering, and act independently (there is no

interference of electron states). Moreover, the inequality 7 >>7/kgT must be satisfied, where
hlkgT =z, is the collision time. This inequality expresses the fact that the collision time can

be neglected, i.e. the collisions are instantaneous. In addition, the external fields must not
modify the energy spectrum of electrons in the crystal; this condition prohibits intense
magnetic fields, for example, which lead to the quantization of electron energy levels.

The quantum nature of electrons is apparent only in the collision term, through the
electron quantum states that satisfy the Pauli principle. A detailed balance between the
number of electrons in the state characterized by the wavevector £ and those in the state &'

leads to the collision term

af 1 1 1 1

(Ej =2 Pk, k) T (K")[1- f(k)]—;P(k,k ) F(R)[L— f (k)] (7)
coll

where P(k,k") is the electron transition probability per unit time from state & into the state

k'. In the equilibrium state
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P(k', k) fo (K")[1— fo (k)] = P(k, k") fo (K)[1— £, (K)]. (8)

We consider distribution functions that can be approximated as perturbations of f,,

i.e. that can be expressed as f (k) = f,(E,)+ f,(k), with

df
f,(k) = -2
(k) dE

2(Ey) -k << 1, (E,), (9)

k

where x(E,) an, as yet, unknown vectorial function (it has specific forms for different

scattering processes). Under these conditions we can express the collision term as

of , o FROL- FR)] FR)L- f (k)]
= =3Pk fo (k)1 fo(k -
(ﬁt]co.. F PR (DR ol )]L fo(K)1- fo (k)] fo(A)[L- fo(k')]j

=- kBlT kZ Pk, k') fo (Ex)L— fo(Ex)Ix(EL) -k — x(E;) - k'] )
if only the linear terms in f, are retained and the identity
_kBTEJILEO: fo (E)[1- o (E)] (11)
is employed. Then,
SR b IR e e [ @

or 1/z(k) =2 P(k,k')1-k', /k,) for elastic collisions, when E, = E,.. Here k',, k, are
&

the projections of k£, k' on the vector . The calculation of the relaxation time can be
performed for different scattering mechanisms, the temperature dependence of this parameter

being generally expressed as

7(E) = A(T)E", (13)
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where A(T) is an energy-independent coefficient, and r is characteristic for each collision

type: r =3/2 for collisions with acoustic phonons in metals, r =-1/2 for the same mecha-
nism in semiconductors, r =1/2 for scattering on optical phonons in polar semiconductors at
high temperatures, r =0 for scattering on neutral impurities in metals, and r =3/2 for colli-

sions with ionized impurities in semiconductors. If several scattering mechanisms coexist,

1 o1

7(E) Z.: 7,(E)’ (14

Electrical conductivity

The electrical conductivity in a crystal is characterized by the tensor & that appears in the

definition of the density of electric current:
Jj=oE, (15)
or on components z, v=X,Y, Z

j/z = Zo-,uv Ev ' (16)

In an isotropic solid the electrical conductivity is a scalar parameter and j = oF . On the other
hand, for f (k)= f,(E,)+ f,(k), the density of electric current per crystal volume can be

expressed as
= S e (k) =~ 2Bt (k) = O o, (k) dk (17)
=V & vt 472"

since the equilibrium density function f,(E,) does not bring any contribution if the sum
above is performed over all positive and negative k values (E,, and hence f,(E,), isan even
function of k, whereas v =#%"V,E is an odd function of k). The perturbation term of the

equilibrium distribution function, f,(k), is determined from the kinetic Boltzmann equation.
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More precisely, if only an electric field of intensity E is applied and there is no temperature

gradient in the sample, i.e. if V. f =0, the kinetic Boltzmann equation can be written as

ey i, -CEv, 1+ 1K) (18)
hi h (k)
The second term can be neglected at small electric fields, when only linear effects in E are

considered, case in which the electrical conductivity is independent of the electric field, and

the equation above can be solved to obtain

Lo dfy df,
(k) =er(h)E n'V,E L =er(h)E v L. (19)

From (15), (17) and (19) it follows that the tensor of the electrical conductivity can be

expressed as

o =00 j[ ] (k)v,v,dk . (20)
In isotropic crystals, for an electric field along the x direction, the conductivity is scalar:

e’ df,
O = Oy :4_72_3.[( dEj (k)V dk . (21)

For spherical iso-energetic surfaces, E, =n°k?/2my, v, =hk,/2my , and in spherical
coordinates with & the polar angle and ¢ the azimuthal angle, k, =ksinécose,

k, =ksin@sing, k, =kcos@, dk =k*dksindéde, and

C=0u=— hzz j( J (k)k dkjsm edejcos (pdgo—?)e—hzzkn]ax( jf j (k)k“dk .

T meff Kmin

(22)

Taking into account that k*dk = (2my )*?m.; E**dE / #2° and that the relaxation time depends

on energy, such that its statistical average can be defined as
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T(—Eﬁ;jr(E)E3”dE
(z(E)) == o , (23)
j( 0jES’ZdE
oL dE
the electrical conductivity becomes
ne?
o= (z(E)), (24)
eff
where we have used the fact that for metals the electron concentration can be written as
n_(me)”zT EY2E
270 o expl(E - Eq)/ksT]+1
2my )32 3/2 ? % om... )32 «
_( 62)3 2 E | +EI(_%jE3/2dE _ (2Mer) efzf)s I[_%jEMdE
27°n° | 3exp[(E-Eg)/ksT1+1, 33\ dE 37 o\ dE
(25)

Similar relations are obtained along the principal axes for a crystal with elliptical iso-
energetic surfaces.

Alternatively, the density of electric current can be expressed as

j=—-env=enuE (26)

where the mobility « of charge carriers/electrons is introduced through v = —uE . The minus

sign indicates that the motion of electrons is opposite to the direction of the applied electric

field E. The relation between the electric conductivity and the mobility is thus

oc=neu, ie y:agE». 27)
eff

In anisotropic crystals the mobility, as the electric conductivity, is a tensor.



