
SOLID STATE PHYSICS 
 

By definition, solid state is that particular aggregation form of matter characterized by strong 

interaction forces between constituent particles (atoms, ions, or molecules). As a result, a 

solid state material has an independent geometric form (in contrast to liquids, which take the 

form of the container) and an invariant volume (in contrast to gases/vapors) in given 

temperature and pressure conditions. As temperature increases, a solid state material can 

evolve into another aggregation form (liquid or gas). Solid state physics studies the structural, 

mechanical, thermodynamic, electrical, magnetic, and optical properties of (poly-)crystalline 

and non-crystalline solids (for example, amorphous materials, such as glass). 

 

Crystal structure 
 

The properties of crystalline solids are determined by the symmetry of the crystalline lattice, 

because both electronic and phononic systems, which determine, respectively, the electric/ 

magnetic and thermal response of solids, are very sensitive to the regular atomic order of 

materials and to any (local or non-local) perturbation of it. The crystalline structure can be 

revealed by the macroscopic form of natural or artificially-grown crystals (see the pictures 

below), or can be inferred from the resulting debris after cleaving a crystalline material.  

  

(a)  (b) (c)  

(d)   (e)  (f)  
 
Crystals of (a) baryt, (b) salt, (c) hexagonal beryl, (d) trigonal quartz, (e) monoclinic gypsum, 
and apatite (f) 
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 Non-crystalline materials have no long-range order, but at least their optical properties 

are similar to that of crystalline materials because the wavelength of the incident photons (of 

the order of 1 μm) is much larger than the lattice constant of crystals and so, photons “see” an 

effective homogeneous medium. Other properties of non-crystalline materials are derived 

based on concepts proper to crystalline solids and, therefore, the crystal structure is extremely 

important in understanding the properties of solid state materials. 

The macroscopic, perfect crystal is formed by adding identical building blocks (unit 

cells) consisting of atoms or groups of atoms. A unit cell is the smallest component of the 

crystal that, when stacked together with pure translational repetition, reproduces the whole 

crystal. The periodicity of the crystalline structure that results in this way is confirmed by X-

ray diffraction experiments. The figures below illustrate crystals in which the basis consists of 

(a) one atom and (b) two atoms. 

 

(a)      (b) 

 

The group of atoms or molecules that forms, by infinite repetition, the macroscopic 

crystal is called basis. The basis is positioned in a set of mathematical/abstract points that 

form the lattice (also called Bravais lattice). So, a crystal is a combination of a basis and a 

lattice. Although usually the basis consists of only few atoms, it can also contain complex 

organic or inorganic molecules (for example, proteins) of hundreds and even thousands of 

atoms.  

In two dimensions, all Bravais lattice points  

 

21 aaR nmmn +=                                                                                                                   (1) 

 

can be obtained as superpositions of integral multiples of two non-collinear vectors  and  

(m and n are arbitrary integers). A basis consisting of s atoms is then defined by the set of 

1a 2a
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vectors , j = 1,2,…,s, that describe the position of the centers of the basis 

atoms with respect to one point of the Bravais lattice. In general, 

21 aar jjj nm +=

1,0 ≤≤ jj nm . 

Every point of a Bravais lattice is equivalent to every other point, i.e. the arrangement 

of atoms in the crystal is the same when viewed from different lattice points. The Bravais 

lattice defined by (1) is invariant under the operation of discrete translation 21 aaT qppq +=  

along integer multiples p and q of vectors  and , respectively, because  1a 2a

 

nqmpmnpqmnpq ++=+= ,)( RRTRT                                                                                            (2) 

 

is again a Bravais lattice point. In fact, since the translation operation is additive, i.e. 

, associative, i.e. vqupuvpq ++= ,TTT mnuvpqmnuvpq TTTTTT )()( = , commutative, i.e. =uvpqTT  

, and has an inverse, such that  and pquvTT qppq −−
− = ,

1 TT ITT =−− qppq ,  with I the identity 

transformation, it follows that the translations form an abelian (commutative) group. Because 

condition (2) is satisfied for all Bravais lattice points,  and  are called primitive 

translation vectors, and the unit cell determined by them is called primitive unit cell. The 

modulus of these vectors,  and 

1a 2a

|| 11 a=a || 22 a=a , are the lattice constants along the 

respective axes, and the area of the unit cell in two dimensions is || 21 aa ×=S . It is important 

to notice that the set of vectors  and  is not unique (see the figures below), but all 

primitive unit cells have the same area.  

1a 2a

 
 

       
 

 

The primitive unit cell covers the whole lattice once, without overlap and without 

leaving voids, if translated by all lattice vectors. An equivalent definition of the primitive unit 

cell is a cell with one lattice point per cell (each lattice point in the figures above belong to 
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four adjacent primitive unit cells, so that each primitive unit cell contains 4×(1/4) = 1 lattice 

point). Non-primitive (or conventional) unit cells are larger than the primitive unit cells, but 

are sometimes useful since they can exhibit more clearly the symmetry of the Bravais lattice. 

Besides discrete translations, the Bravais lattice is invariant also to the point group 

operations, which are applied around a point of the lattice that remains unchanged. These 

operations are: 

• Rotations by an angle n/2π  about a specific axis, denoted by nC , and its multiples, 

j
n . Geometric considerations impose that n = 1, 2, 3, 4 and 6, and that 

repeating the rotation n times one obtains EC n = , where E is the identity operation, 

which acts as rr → . Moreover, EC

j
n CC )(=

n

== π21  does not represent a symmetry element.  

 
 

A B 

C D 

θ θ 

 
 

The allowed values of n can be determined assuming that we apply a rotation with an 

angle θ  around an axis that passes first through a point A and then  through an adjacent 

lattice point B. The points A and B are separated by the lattice constant a. If C and D 

are the resulting points, they should also be separated by an integer multiple of a. From 

the requirement that CD = θπθ cos2)2/sin(2 aaaa −=−+  = ma, or =≤− θcos1  

, with m integer, it follows that m can only take the values −1, 0, 1, 2, and 

3, the corresponding 

12/)1( ≤− m

θπ /2=n  taking the values specified above. As for translations, 

the rotations also form an abelian group. 

Examples of two-dimensional figures with different rotation symmetries: 

 

 

C2                               C3                        C4                         C6 
 

 



Crystal Structure 5

• Inversion I, which is defined by the operation rr −→  if applied around the origin. 

• Reflection jσ , which can be applied around the horizontal plane (j = h), the vertical 

plane (j = v), or the diagonal plane (j = d).  

• Improper rotation nS , which consists of the rotation nC  followed by reflection in 

the plane normal to the rotation axis. Note that IS ≡2 . 

When we combine the point group symmetry with the translational symmetry, we 

obtain the space-group symmetry. It is important to notice that the basis can introduce 

additional symmetry elements, such as helicoidal symmetry axes and gliding reflection 

planes. The figure bellow represents several symmetry operations: (a) translations, (b) 

rotation, (c) inversion, and reflection with respect to a (d) vertical, and (e) horizontal plane. 

 

(a)  (b)

 

(c)

     
        

(d)

     
        

(e) 

 

Crystal lattices are classified according to their symmetry properties at point group 

operations. The five Bravais lattice types in two dimensions are shown in the figure below.  

These are: 

• square lattice, for which |||| 21 aa = , and γ = 90°, where γ is the angle between 1a  and 

2a , 

• rectangular lattice, for which |||| 21 aa ≠ , and γ = 90°, 

• centered rectangular lattice, which is a rectangular lattice with an additional lattice 

point in the center of the rectangle, 

• hexagonal lattice, for which |||| 21 aa = , and γ = 60° (or 120° for a different choice of 

the origin), 

• oblique rectangular lattice (called also oblique lattice), for which |||| 21 a , and γ ≠ 

90°, 60° (or 120°). 

a ≠
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With the exception of the centered rectangular 

lattice, all unit cells in the figure above are primitive unit 

cells. The primitive cell for the centered rectangular lattice 

is a rhombus (see figure at right) and therefore this Bravais 

lattice is also called rhombic lattice, case in which its 

primitive unit cell has | , and γ ≠ 90°, 60° (or 120°).  ||| 21 aa =

 
Each lattice type has a different set of symmetry operations. For all Bravais lattice 

types in two dimensions, the rotation axes and/or reflection planes occur at lattice points. 

There are also other locations in the unit cell with comparable or lower degrees of symmetry 

with respect to rotation and reflection. These locations are indicated in the figure below. 
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In order to incorporate the information about the point group symmetry in the 

primitive cell, the Wigner-Seitz cell is usually employed. This particular primitive unit cell is 

constructed by first drawing lines to connect a given lattice point to all nearby lattice points, 

and then drawing new lines (or planes, in three-dimensional lattices) at the mid point and 

normal to the first lines. The Wigner-Seitz cell is the smallest area (volume) enclosed by the 

latter lines (planes). An example of the construction of a Wigner-Seitz cell for a two-

dimensional oblique lattice is illustrated in the figure below. For a two-dimensional square 

lattice the Wigner-Seitz cell is also a square. The Wigner-Seitz cell is always centered on a 

lattice point and incorporates the volume of space which is closest to that lattice point rather 

than to any other point. 

 

 

r 
θ 

 

The faces of the Wigner-Seitz cell satisfy the relation 2/cos Rr =θ , where R is the 

distance to the nearest neighbor and θ is the angle between r and R. This relation can be 

rewritten as  or, since the equation is equivalent to the replacement of R with 

, , and finally, . In other words, the faces of the Wigner-

Seitz cell are determined by the intersection between equal-radius spheres centered at the 

nearest-neighbor points of the Bravais lattice. 

2)(2 RRr =⋅

R− 02 2 =+⋅ RRr 22)( rRr =+

In a similar manner, in three dimensions, all Bravais lattice points  

 

321 aaaR pnmmnp ++=                                                                                                          (3) 

 

can be obtained as superpositions of integral multiples of three non-coplanar primitive 

translation vectors ,  and  (m, n, and p are arbitrary integers), and the point group 1a 2a 3a
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operations are defined identically. The volume of the primitive unit cell, which in this case is 

a parallelepiped, is |)(| 321 aaa ⋅×=Ω . 

There are 14 three-dimensional Bravais lattices, which belong to 7 crystal systems, as 

can be seen from the figure below, where the primitive translation vectors are denoted by a, b, 

c (with respective lengths a, b, and c), and α, β, γ are the angles between b and c, c and a, and 

a and b, respectively. These crystal systems, which are different point groups endowed with a 

spherical symmetric basis, are: 

• cubic, for which a = b = c, α = β = γ = 90°. It consists of three non-equivalent space-

group lattices: simple cubic, body-centered cubic, and face-centered cubic. This is the 

crystal system with the highest symmetry and is characterized by the presence of four 

3C  axes (the diagonals of the cube) 

• tetragonal, for which a = b ≠ c, α = β = γ = 90°. It encompasses the simple and body-

centered Bravais lattices and contains one 4C  symmetry axis. 

• orthorhombic, for which a ≠ b ≠ c, α = β = γ = 90°. It incorporates the simple, body-

centered, face-centered, and side-centered lattices and has more than one 2C  

symmetry axis or more than one reflection plane (actually, three such axes/planes, 

perpendicular to each other). 

• hexagonal, for which a = b ≠ c, α = β = 90°, γ = 120°.  It 

is characterized by the existence of a single 6  

symmetry axis. The conventional hexagonal unit cell 

(see the figure at right) is composed of three primitive 

cells. 

C

• trigonal, for which a = b = c, α = β = γ ≠ 90°. It contains a single 3C  axis. 

• monoclinic, for which a ≠ b ≠ c, α = γ = 90°≠ β . It includes the simple and side-

centered lattices, and has one 2C  symmetry axis and/or one reflection plane 

perpendicular to this axis. 

• triclinic, for which a ≠ b ≠ c, α ≠ β ≠ γ ≠ 90°. This is the crystal system with the 

lowest symmetry. It is not symmetric with respect to any rotation axis or reflection 

plane. 
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The relations between these lattices can be summarized 

in the figure at the right. 

 The different crystal systems have different 

numbers of unit cell types because other possible unit 

cell types cannot represent new Bravais lattices. For 

example, both the body-centered and the face-centered 

monoclinic lattices can be reduced to the side-centered 

lattice by appropriately choosing the primitive 

translation vectors. 

 

Examples of two sets of primitive translation vectors for a body-centered cubic (bcc) 

lattice are represented in the figure below at left and center, while the figure at right displays a 

set of primitive translation vectors for a face-centered cubic (fcc) lattice.  
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The primitive translation vectors for the left figure above can be expressed as 

 

))(2/(1 zyxa −+= a , ))(2/(2 zyxa ++−= a , ))(2/(3 zyxa +−= a ,                            (4) 
 

while those for the right figure are  

 

))(2/(1 yxa += a , ))(2/(2 zya += a , ))(2/(3 xza += a                                                    (5) 
 

and the angles between these vectors are 60°. 

A simple lattice has lattice points only at the corners, a body-centered lattice has one 

additional point at the center of the cell, a face-centered lattice has six additional points, one 

on each side, and a side-centered lattice has two additional points, on two opposite sides. The 

simple lattices are also primitive lattices and have one lattice point per cell, since the eight 

sites at the corners are shared by eight adjacent unit cells, so that 8×(1/8) = 1. The non-simple 

lattices are non-primitive. The volume of the primitive unit cell in these lattices is obtained by 

dividing the volume of the conventional unit cell by the number of lattice points. In particular, 

the body-centered lattices have two points per unit cell: the eight at the corners which 

contribute with 8×(1/8) = 1, and the one in the center, which belongs entirely to the unit cell. 

The face-centered lattices have 4 lattice points per cell: those in the corners contribute with 

8×(1/8) = 1, and those on the faces contribute with 6×(1/2) = 3, since they are shared by two 

adjacent cells. Finally, the side-centered lattices have two lattice points per cell: the points at 

the corner contribute with 8×(1/8) = 1, and those on the faces with 2×(1/2) = 1. The 

characteristics of the cubic lattices with side a are summarized in the table below. If each 

lattice point is expanded into a sphere with a radius equal to half of the distance between 

nearest neighbors, such that adjacent spheres touch each other, then a packing fraction can be 

defined as the fraction between the volume of the spheres contained in the conventional unit 
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cell and the volume of the unit cell. Note that in the volume between the spheres one can 

always insert smaller spheres, which can stand for other atom types. 

 

 Simple Body-centered Face-centered 

Volume of 
conventional cell 

a3 a3 a3 

Lattice points per 
cell 

1 2 4 

Volume of primitive 
cell 

a3 a3/2 a3/4 

Number of nearest 
neighbors 

6 8 12 

Nearest-neighbor 
distance 

a √3a/2 a/√2 

Number of second 
neighbors 

12 6 6 

Second-neighbor 
distance 

√2a a a 

Packing fraction π/6 = 0.524 √3π/8 = 0.68 √2π/6 = 0.74 
 

The 14 Bravais lattices incorporate all possible crystalline structures; they result by taking 

into consideration the space-group symmetry, i.e. the symmetry at translations and the point 

group symmetry of the lattice (the symmetry with respect to rotation, reflexion or inversion). 

When the basis consists of only one atom, the Bravais lattice is identical with the crystalline 

structure. But when the basis is complex and consists of several atoms, say s, the crystalline 

structure can be seen as formed by the interpenetration of s Bravais lattices. The Bravais 

lattices have always an inversion center in one of the lattice points, whereas such an inversion 

center can lack in crystals with complex bases. 

By counting the point groups of the possible different crystals (which have bases with 

different symmetries), one ends with 32 crystalline classes that can be accommodated by the 7 

crystal systems. Also, there are 230 space groups that result from the combination of the 32 

crystalline structures with the translational symmetry. 
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Index system for lattice points, directions and planes 
When the origin of the primitive translation vectors is a lattice point, another lattice point 

with a position  is simply specified by the set of numbers [[m,n,p]]. A 

negative integer m, n or p is denoted by a − sign placed on top of it. For example, [[

321 aaaR pnmmnp ++=

pnm ]] 

stays for the lattice point specified by the integers m, −n and p, with m, n and p positive 

numbers. In particular, for the three-dimensional primitive Bravais lattices the coordinates of 

the lattice point at the origin are [[0,0,0]], the other lattice points differing only through 

discrete translations along the three coordinate axis. The number of non-equivalent lattice 

points in a Bravais lattice is given by the number of lattice points per unit cell. In particular, 

for the body-centered lattice, the position of the lattice point at the center of the cube is 

denoted by [[1/2,1/2,1/2]], the three additional lattice points in face-centered lattices having 

coordinates [[0,1/2,1/2]], [[1/2,0,1/2]], [[1/2,1/2, 0]]. In a similar manner, depending on the 

set of opposite sites they can occupy, the additional site in a face-centered lattice has the 

coordinates [[0,1/2,1/2]], [[1/2,0,1/2]] or [[1/2,1/2,0]].  

A direction, by definition, passes through two lattice points. To specify a direction in 

a crystalline lattice, one uses the symbol [mnp], where m, n and p are three integers 

determined by the following rule: since one can specify a direction by the coordinates 

[[ ]] and [[ ]] of two points through which it passes, the indices m, n and p 

are defined as the smallest integer numbers that satisfy the proportionality relations 

111 ,, pnm 222 ,, pnm

 

12

12

nn
mm

n
m

−
−

= ,        
12

12

pp
nn

p
n

−
−

= ,         
12

12

mm
pp

m
p

−
−

= ,                                                         (6) 

 

or  
 

)(:)(:)(:: 121212 ppnnmmpnm −−−= .                                                                          (7) 

 

If one of the integers is negative, the − sign is placed on top of the integer. For example, 

[ pnm ] stays for the direction specified by the integers m, −n and p. If the direction is not 

considered as an oriented axis but as a simple line, the direction specified by the integers m, n, 

and p is the same as that specified by −m, −n, and −p (otherwise, the change of all signs 

means a change of direction of the same line). If there are several equivalent directions 

(equivalent, from the point of view of crystal symmetry), they are denoted as . A 〉〈mnp
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particular situation is encountered in the hexagonal lattice, in which lattice directions are 

labeled by four numbers (this situation is not further discussed in this course). 
 
Examples: The  axis is the [100] direction. The 1a 2a−  axis is the [ 010 ] direction. Other 

examples are illustrated in the figure below. 
 
 

[110] 

[011] 

[011] 
[101] 

a1 

a2 

a3 

 
 

In three-dimensional lattices, the orientation of a crystal plane is determined by three 

non-collinear points in the plane. If each point is situated on a different crystal axis, the plane 

is specified by the coordinates of the points in terms of the lattice constants , , and . 

Another way to specify the orientation of a plane, which is more useful for structure analysis, 

involves the determination of three indices, called Miller indices, according to the rule: 

1a 2a 3a

• Find first the intercepts of the plane on the axes in terms of lattice constants 1a , 2a , 

and 3a , irrespective of the nature (primitive or non-primitive) of the unit cell.  

• Take the reciprocal of these numbers.  

• If fractional, reduce these numbers to the smallest three integers, say m, n, p, with the 

same ratio. The result, symbolized by (mnp) (or )( pnm  if the second index, for 

example, is negative), is the Miller index system of the plane.  

It is obvious that the Miller index for an intercept at infinity is zero. The faces of a 

cubic crystal, for example, are denoted by (100), (010), (001), )001( , )010( , and )100( . 

Moreover, the plane (200) is parallel to (100), but cuts the  axis at . If, from the point 

of view of crystal symmetry, there is a set of nonparallel equivalent planes, they are 

symbolized as {mnp}. For example, the set of faces of a cubic crystal is {100}. Again, for the 

hexagonal lattice there are four Miller indices instead of three. Examples of Miller indices are 

given in the figures below. 

1a 2/a
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(001) 

 

(101) 

 

(111) 
 

 

Note that the Miller indices determine not only one plane but a family of parallel 

planes, since there is an infinite number of planes with the same indices, all of which cut the 

coordinate axes at , , and , with s integer. The plane that cuts the axes at , 

, and  is the closest to the origin from the family of parallel planes.  

ms / ns / ps / m/1

n/1 p/1

Note also that the planes with Miller indices (sm,sn,sp) are parallel with the plane 

(mnp), but the distance between them is s times smaller. For example, the set of planes (222) 

is parallel to but twice as close as the (111) set of planes. 

In cubic crystals, the plane (mnp) is perpendicular to the direction [mnp] with the same 

indices, but this result cannot be extended to other crystal systems. An example is given in the 

figure below. 
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Simple crystal structures 
 
One of the most simple crystal structures and, at the same time, of general interest, is that of 

NaCl (sodium chloride). It is illustrated below. The lattice is face-centered cubic, with a basis 

consisting of one Cl− ion (blue) at [[000]] and a Na+ ion (green) at [[1/2,1/2,1/2]]. As can be 

seen from the figure below, a unit cube consists of four NaCl units, with Na+  ions at positions 

[[1/2,1/2,1/2]], [[0,0,1/2]], [[0,1/2,0]], and [[1/2,0,0]] and Cl− ions at [[000]], [[1/2,1/2,0]], 

[[1/2,0,1/2]], and [[0,1/2,1/2]]. Each atom has as nearest neighbors six atoms of opposite kind. 

Example of crystals with this structure and their lattice constants are given below. 

 

Crystal a(Å) Crystal a (Å) Crystal  a (Å)

LiF 4.02 KBr 6.60 MgO 4.21 

LiBr 5.50 AgBr 5.77 MnO 4.43 

NaCl 5.64 AgF 4.92 MgS 5.20 

NaI 6.47 CaSe 5.91 PbS 5.92 

KCl 6.29 BaO 5.52 SrTe 6.47 

 

 
 Another common structure is that of CsCl (other crystals with the same structure are 

given in the table below). The lattice is in this case simple cubic, with a basis consisting of 

one Cs+ ion (red) at [[000]], and one Cl− ion (green) at [[1/2,1/2,1/2]]. The number of nearest 

neighbors (of opposite kind) is eight. 

 

 

Crystal a (Å) Crystal a (Å) Crystal a (Å)

AlNi 2.88 CsCl 4.12 TlCl 3.83 

CuZn (β-brass) 2.94 CsBr 4.29 TlBr 3.97 

AgMg 3.28 CsI 4.57 TlI 4.20 

 

 

  

The crystal structure of diamond (and also of Si and Ge semiconductors) is 

represented below.  
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Crystal a (Å) 

C (diamond) 3.57 

Si 5.43 

Ge 5.66 

α-Sn (grey) 6.49 

 

 

It is a face-centered cubic (fcc) lattice with a basis consisting of two identical atoms, with 

coordinates [[000]] and [[1/4,1/4,1/4]]. Alternatively, diamond can be viewed as being formed 

from two interpenetrating fcc lattices, displaced by 1/4 of the volume diagonal. Since the 

conventional unit cell of the fcc lattice contains 4 lattice points, it follows that the 

conventional unit cell of diamond has 2×4 = 8 atoms. No primitive cell exists that contains 

only one atom. In diamond, each atom has 4 nearest neighbors and 12 next nearest neighbors. 

It is usually encountered in materials where the covalent bonding prevails. Note that, although 

a fcc lattice, the packing fraction of the diamond structure is only 0.34. 

 A closely related crystal structure to that of the diamond is the cubic zinc sulfide (zinc 

blende structure). It differs from diamond in that the two atoms of the basis are different (in 

this case, Zn and S). The conventional unit cell contains four molecules, the Zn atoms (dark 

blue in the figure below) being placed at the positions [[000]], [[0,1/2,1/2]], [[1/2,0,1/2]] and 

[[1/2,1/2,0]], whereas the S atoms (green) occupy the positions [[1/4,1/4,1/4]], [[1/4,3/4,3/4]], 

[[3/4,1/4,3/4]], and [[3/4,3/4,1/4]]. Each atom is surrounded by four equally distant atoms of 

the opposite kind, placed in the corners of a regular tetrahedron.  

 

Crystal a (Å) Crystal a (Å) Crystal a (Å)

SiC 4.35 AlP 5.45 InAs 6.04 

ZnS 5.41 AlAs 5.66 InSb 6.48 

ZnSe 5.67 GaAs 5.65 SiC 4.35 

MnS (red) 5.60 GaSb 6.12 CuCl 5.41 

CdS 5.82 GaP 5.45 CuBr 5.69 

CdTe 6.48 AgI 6.47 HgSe 6.08 
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Unlike in the diamond structure, where there is a center of inversion at the midpoint of every 

line between nearest-neighbor atoms, such inversion centers are absent in the zinc blende 

structure. This is an example of additional symmetry operations related to the basis of the 

crystal structure. 

 The hexagonal close-packed (hcp) crystal structure can be obtained from the 

hexagonal Bravais lattice if the basis consists of two atoms (blue and red in the figure below, 

left) and if the atoms in one plane, which touch each other, also touch the atoms in adjacent 

planes. The packing fraction in this case is 0.74 (as in fcc lattices), and is maximum. This 

crystal structure is found in the solid state of many elements, as can be seen from the table 

below. The hcp structure can be viewed as vertical arrangement of two-dimensional 

hexagonal structures, such as the spherical atoms in the second layer are placed in the 

depressions left in the center of every other triangle formed by the centers of the spherical 

atoms in the first layer. The third layer of atoms is then placed exactly above the first, the 

fourth above the second, and so on. This kind of arrangement is called ABAB… In an ideal 

hcp structure, the height between the first and the third layers (the height along the c axis in 

the figure below) is ac 3/8= = 1.63a. Because the symmetry of the hcp lattice is 

independent of the ratio c/a, in real hcp structures this ratio can take values close to, but not 

exactly identical to the ideal 1.63 value (see the table below). 
 
     

Crystal a (Å) c/a Crystal  a (Å) c/a 

He 3.57 1.63 Mg 3.21 1.62

Be 2.29 1.58 Ti 2.95 1.58

Nd 3.66 1.61 Zr 3.23 1.59

Zn 2.66 1.86 Y 3.65 1.57

Cd 2.98 1.88 Gd 3.64 1.59

α-Co 2.61 1.62 Lu 3.50 1.58
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If the c/a ratio differs considerably from the ideal 

1.63 value, the hexagonal structure is no longer close-

packed. This is the case of graphite, for example, which is 

a non-closed-packed hexagonal structure of carbon atoms 

(see the figure at right), with a  = 1.42Å and c = 3.40 Å, 

which implies that c/a = 2.39. 

 The fact that the hcp structure has the same packing fraction as the fcc structure is 

easily explained in the figure below. Suppose that we place the first two plane of atoms as in 

the hcp structure. If the atoms in the third plane are positioned over the centers of the triangles 

formed by the centers of the atoms in the first plane that have no atoms from the second plane 

above them, the resulting structure is in fact a fcc. This vertical arrangement is called 

ABCABC…The hcp and fcc structures differ only by the vertical arrangement (ABAB… or 

ABCABC…) of hexagonal planes of atoms. 

 
 
 
 
                                                                                       
 

 

 

  

 
A structure closely related to hcp is wurtzite, generally encountered in binary com- 

pound semiconductors such as ZnS (wurtzite), ZnO, BN, 

CdS, CdSe, GaN, AlN, but sometimes also in ternary 

compounds such as Al0.25Ga0.5N. In binary compounds 

(see the figure at right), each element has a hcp structure, 

and the crystal is formed by interpenetrating two such 

structures, so that an atom in one hcp lattice is 

equallydistanced from the atoms in the other hcp lattice.  
 
The crystal structure of the elements in the periodic table is indicated in the figure 

below. Note that several elements can suffer transitions from one crystalline structure to 

another depending on the external conditions: temperature, pressure, etc. In the table below 

dhcp stands for double hexagonal closed-packed (the height of the cell along the direction 

normal to the hexagonal planes is twice that in the hcp structure) 
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Lattice constants of some elements that crystallize in the fcc crystal structure: 

Crystal  a (Å) Crystal  a (Å) Crystal a (Å) Crystal a (Å) Crystal  a (Å) 

Ar 5.26 Au 4.08 Cu 3.61 Ni 3.52 Pt 3.92 

Ag 4.09 Ca 5.58 Kr 5.72 Pb 4.95 Sr 6.08 

Al 4.05 β-Co 3.55 Ne 4.43 Pd 3.89 Xe 6.2 

 

 

Lattice constants of some elements that crystallize in the bcc crystal structure: 

Crystal  a (Å) Crystal  a (Å) Crystal a (Å) Crystal a (Å)

Ba 5.26 Fe 4.08 Mo 3.61 Rb 3.52 

Cr 4.09 K 5.58 Na 5.72 Ta 4.95 

Cs 4.05 Li 3.55 Nb 4.43 V 3.92 

W 6.08       

 



Reciprocal lattice 
 

The concept of reciprocal lattice is directly connected with the periodicity of crystalline 

materials and of their physical properties (such as charge density, electric field distribution, 

etc.). Since the crystal is invariant under any translation with a Bravais lattice vector 

 

321 aaaR pnmmnp ++=                                                                                                            (1) 

 

for any integers m, n or p, any function ϕ with the same periodicity as the crystalline lattice 

must satisfy the relation  

 

)()( mnpRrr += ϕϕ ,                                                                                                                    (2) 

 

where  is an arbitrary position vector with coordinates , , and  measured 

with respect to the (generally non-orthogonal) system of coordinates determined by , , 

and . This means that 

),,( 321 xxx=r 1x 2x 3x

1a 2a

3a

 

),,(),,( 332211321 paxnaxmaxxxx +++= ϕϕ                                                                         (3) 

 

or, for a function that can be expanded in a Fourier series 

 

∑ ++=
321 ,,

332211321 )](exp[),,(
GGG

xGxGxGixxx kϕϕ                                                                 (4) 

 

it follows that, for any m, n, and p, 

 

1)exp( 11 =aimG ,     ,     1)exp( 22 =ainG 1)exp( 33 =aipG .                                                     (5) 

 

Thus, , with i = 1, 2, 3, can only take discrete values  iG

 

iii asG /2π= ,                                                                                                                           (6) 
 

and (4) can be rewritten as 



Reciprocal lattice 2

∑ ⋅=
321 ,,

)exp()(
sss

i rGr kϕϕ                                                                                                          (7) 

 

where  
 

332211 bbbG sss ++=                                                                                                               (8) 
 

is a vector in a coordinate system defined by the vectors , i = 1,2,3, such that ib
 

ijji πδ2=⋅ ab .                                                                                                                          (9) 
 

Similar to the Bravais lattices that are constructed starting with the primitive vectors , one 

can define a reciprocal lattice in terms of the primitive vectors , such that G in (8) are 

points in the reciprocal lattice. A reciprocal lattice can only be defined with respect to a given 

direct lattice. As demonstrated in the following, the G vectors have dimensions (and meaning 

of) wavevectors related to plane waves with the periodicity of the direct lattice. 

ia

ib

 If the vectors  are chosen and the volume of the primitive cell in the direct space is 

 , the vectors  can be chosen as 

ia

|)(| 321 aaa ⋅×=Ω ib

 

),)(/2( 321 aab ×Ω= π    ),)(/2( 132 aab ×Ω= π    ))(/2( 213 aab ×Ω= π .                               (10) 

 

It follows then that the volume of the primitive cell of the reciprocal lattice is given by 

 

Ω=×⋅=Ω /)2(|)(| 3
321 πbbbrec .                                                                                            (11) 

 

Examples of direct and corresponding reciprocal lattices in two dimensions are given in the 

figures below. 
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For , )(1 yxa −= d )(2 yxa += d , the vectors of the reciprocal lattice are determined from 

condition (9), and are found to be ))(/(1 yxb −= dπ , ))(/(2 yxb += dπ . 

 

 
 

When x and y are not orthogonal, but ε=⋅ yx  (see the figure above), for  and 

, we obtain (please check!) 

yxa cd −=1

yxa cd +=2

yxb
)1()1( 221

ε
επ

ε
επ

−
+

−
−

+
=

cd
cd

cd
dc ,   yxb

)1()1( 222
ε
επ

ε
επ

−
−

+
−

−
=

cd
cd

cd
dc . 

In three dimensions, the reciprocal lattices for the Bravais lattices in the cubic system 

are summarized in the table below 

 

Real space Reciprocal space 
Lattice Lattice constant Lattice Lattice constant 

SC a SC a/2π  

BCC a FCC a/4π  

FCC a BCC a/4π  

 

The reciprocal lattice of a cubic lattice is also cubic since, in this case, if x, y, z are orthogonal 

vectors of unit length, = ax, = ay, = az and , from (10) it follows that 1a 2a 3a 3a=Ω

,)/2(1 xb aπ=  ,)/2(2 yb aπ=  zb )/2(3 aπ= , i.e. the reciprocal lattice is simple cubic with a 

lattice constant a/2π . 

Analogously, the reciprocal lattice to the bcc lattice with (see the first course) 

, ))(2/(1 zyxa −+= a ))(2/(2 zyxa ++−= a , ))(2/(3 zyxa +−= a , and  has 

primitive vectors 

2/3a=Ω

))(/2(1 yxb += aπ , ))(/2(2 zyb += aπ , ))(/2(3 xzb += aπ , i.e. is a fcc 

lattice with  a volume (of the primitive unit cell) in reciprocal state of , 

whereas the reciprocal lattice of the fcc lattice, with 

3)/2(2 arec π=Ω

))(2/(1 yxa += a , ))(2/(2 zya += a , 
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))(2/(3 xza += a , and  is a bcc lattice with  and primitive vectors 4/3a=Ω 3)/2(4 arec π=Ω

))(/2(1 zyxb −+= aπ , ))(/2(2 zyxb ++−= aπ , ))(/2(3 zyxb +−= aπ . In both cases the 

cubic structure of the reciprocal lattice has a lattice constant of a/4π . 

Observation: The reciprocal lattice of a reciprocal lattice is the direct lattice.  

Because the product of a primitive Bravais lattice vector and of a primitive vector of the 

reciprocal cell is an integer multiple of π2 , i.e. that  

 

)(2 plnkmhhklmnp ++=⋅ πRG ,                                                                                               (12) 

 

for all integers m, n, p and h, k, l, it follows that 1)exp( =⋅ RGi  for any vector R in the Bravais 

lattice and any vector G in the reciprocal lattice. This implies that the function  has 

the same periodicity as the crystal because 

)exp( rG ⋅i

=⋅⋅=+⋅ )exp()exp()](exp[ RGrGRrG iii  

. As a consequence, )exp( rG ⋅i

 

∫ ⋅cell dVi )exp( rG                                                                                                                       (13) 

 

is independent of the choice of the cell and a translation with an arbitrary vector d should not 

change the value of the integral. More precisely, if 

 

∫∫ ⋅=+⋅ cellcell dVidVi )exp()](exp[ rGdrG                                                                              (14) 

 

then 0)exp(]1)[exp( =⋅−⋅ ∫cell dVii rGdG , from which it follows that  

 

0,)exp( GrG δΩ=⋅∫cell dVi                                                                                                         (15) 

 

and that the set of functions )exp( rG ⋅i  form a complete, orthonormal basis for any periodic 

function which has the same periodicity as the crystal, i.e. which can be written as  

 

∑ ⋅=
G

G rGr )exp()( iϕϕ .                                                                                                        (16) 
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If the formula above is regarded as a Fourier transformation of the periodic function ϕ, the 

coefficients Gϕ  can be retrieved by performing an inverse Fourier transformation. More 

precisely, since 

 

'])'(exp[

)'exp()exp()'exp()(

GG
G

G
G

G

G
G

rGG

rGrGrGr

δϕϕ

ϕϕ

Ω=⋅−=

⋅−⋅=⋅−

∑∫∑

∫∑∫

cell

cellcell

dVi

dViidVi
                                                (17) 

 

it follows that  

 
∫ ⋅−Ω= −
cell dVi )exp()(1 rGrG ϕϕ .                                                                                         (18) 

 

 
Relations between the direct and reciprocal lattices 
One geometrical property that can be easily shown is that the reciprocal lattice vector 

 

321 bbbG pnmmnp ++=                                                                                                           (19) 
 

is perpendicular to the plane (actually, to the set of parallel planes) with Miller indices (mnp) in 

the Bravais lattice. The closest plane to the origin from the set of planes (mnp) cuts the  

coordinate axes at , , and , respectively.  

ia

ma /1 na /2 pa /3

To show that (mnp) is perpendicular to  it is sufficient to demonstrate that  is 

perpendicular to two non-collinear vectors in the (mnp) plane, which can be chosen as 

mnpG mnpG

 

mn // 12 aau −= ,               mp // 13 aav −= ,                                                                      (20) 

 

and satisfy, indeed, the relations 

 

0=⋅=⋅ mnpmnp GvGu                                                                                                              (21) 
 

because of (9). Then, it follows that the normal to the (mnp) plane that passes through the 

origin can be expressed as  

 
||/ mnpmnpmnp GGn = .                                                                                                              (22) 
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a1 

a2 

a3 

n 

a1/m 

a2/n 

a3/p 

 
 A consequence of this result is that the distance between two consecutive planes with 

the same Miller indices (mnp) is inversely proportional to the modulus of . Since we can 

always draw a plane from the (mnp) family through the origin, the distance between two 

successive planes is equal to the distance between the origin and the closest plane to origin 

from the (mnp) family. This distance is obtained by calculating the projection on the normal to 

the (mnp), i.e. on 

mnpG

||/ mnpmnpmnp GGn = , of any of the vectors ,  , or . Using 

(22) it is found that 

m/1a n/2a p/3a

 

||
2321

mnp
mnp pnm

d
G

ananan π
=⋅=⋅=⋅= .                                                                                (23) 

 

 
 

So,  

 

)(2)(2)(2
2

133221
2
3

22
2

22
1

2 bbbbbb ⋅+⋅+⋅+++
=

pmnpmnbpbnbm
dmnp

π .                       (24) 
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As already pointed out in the discussion about Miller indices, the distance between any 

two planes in the family (sm,sn,sp), is s times smaller than between any two planes in the 

family (mnp). The two families/sets of planes are parallel.  

In particular, for the simple, body-centered and face-centered cubic Bravais lattices 

with the primitive translation vectors given in the Crystal Structure section of the course, the 

distance between two consecutive planes with the same Miller indices is, respectively, 

 

222 pnm
ad sc

mnp
++

= ,                                                                                                        (25a) 

222 )()()( nmmppn
ad bcc

mnp
+++++

= ,                                                                             (25b) 

222 )()()( pnmnmpmpn
ad fcc

mnp
−++−++−+

=                                                            (25c) 

 

Due to the form of (7), the vectors G of the reciprocal lattice can be understood as wavevectors 

of plane waves with the periodicity of the lattice and wavelengths ||/2 Gπ , similar to wave-

vectors in optics that are perpendicular to wavefronts and have dimensions related to the 

wavelength λ as λπ /2 . 

 

The first Brillouin zone 
Analogous to the Wigner-Seitz cell in direct lattices, one can define a primitive unit cell in the 

reciprocal lattice that has the same symmetry as this lattice. This primitive unit cell is known as 

the first Brillouin zone. The construction of the first Brillouin zone is similar to that of the 

Wigner-Seitz cell, i.e. we draw lines to connect a given lattice point in the reciprocal lattice to 

all nearby lattice points, and then draw new lines (or planes, in three-dimensional lattices) at 

the mid point and normal to the first set of lines. These lines (planes) are called Bragg planes 

since (as we will see later) all k vectors that finish on these surfaces satisfy the Bragg 

condition. The first Brillouin zone is then the area (volume) in reciprocal space that can be 

reached from the origin, without crossing any Bragg planes. Higher-order Brillouin zones, say 

the nth Brillouin zone, are then defined as the area (volume) in reciprocal space that can be 

reached from the origin by crossing exactly 1−n  Bragg planes. The construction of the first 

(light blue), second (light brown) and third (dark blue) Brillouin zones for a two-dimensional 

lattice is illustrated in the figure below. The Bragg planes enclosing the nth Brillouin zone 

correspond to the nth order X-ray diffraction.  
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Although higher order Brillouin zones are fragmented, the fragments, if translated, look like 

the first Brillouin zone. This process is called reduced zone scheme. All Brillouin zones, 

irrespective of the order, have the same volume.  

 

 
 

The higher-order Brillouin zones for a two-dimensional square lattice are illustrated in the 

figure below. 
 

 
 

 As for Wigner-Seitz cells, the faces of the first Brillouin zone satisfy the relation 

, where  is the distance to the nearest neighbor in the reciprocal space. This 

relation can be rewritten as  or, since the equation is equivalent to the 

replacement of G with , we obtain , i.e. the first Brillouin zone is the 

intersection of spheres with the same radius centered at nearest neighbor points in the 

reciprocal lattice. 

2/|| 2GGk =⋅ || G

022 =⋅− GkG

G− 22)( kGk =+
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In particular, since the reciprocal lattice of the bcc lattice is a fcc lattice, the first 

Brillouin zone of the bcc lattice (see the polyhedron in the figure a below) is the Wigner-Seitz 

cell of the fcc. The reverse is also true: the first Brillouin zone of a fcc lattice (the truncated 

octahedron/rhombododecahedron in figure b below) is the Wigner-Seitz cell of the bcc lattice.  

 

 
 

 For certain Bravais lattice, in particular bcc, fcc and hexagonal, the points of highest 

symmetry in the reciprocal lattice are labeled with certain letters. The center of the Brillouin 

zone is in all cases denoted by Γ. Other symmetry points are denoted as follows (see also 

figures): 

 

sc lattice: M – center of an edge 

R – corner point 

X – center of a face 

bcc lattice: H – corner point joining four edges 

  N – center of a face 

  P – corner point joining three edges 

fcc lattice: K – middle of an edge joining two hexagonal faces 

  L – center of a hexagonal face 

  U – middle of an edge joining a hexagonal and a square face 

  W – corner point 

  X – center of a square face 
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hexagonal lattice:  

A – center of a hexagonal face 

  H – corner point 

  K – middle of an edge joining two rectangular faces 

  L – middle of an edge joining a hexagonal and a rectangular face 

  M – center of a rectangular face 

Dispersion relations of electrons and phonons for different crystal directions use this labeling 

(see the figures below), the labels indicating the direction but also the symmetry of the crystal, 

since different labels are used for different symmetries. 

 

 
 

 



 

X-ray diffraction on crystalline structures 
 

The direct observation of the periodicity of atoms in a crystalline material relies on the X-ray 

or particle (electron or neutron) diffraction/scattering on these spatially periodic structures, 

since the wavelength of the incident beam is in these cases comparable to the typical 

interatomic distance of a few Å. Optical diffraction is not suitable for this purpose since the 

wavelength of photons is much too long (about 1 μm) in comparison to the lattice constant (a 

few Angstroms). In a diffraction experiment, both the X-ray or particle source and the detector 

are placed in vacuum and sufficiently far away from the sample such that, for monochromatic 

radiation, the incident and outgoing X-ray or particle beams can be approximated by plane 

waves. The X-rays can be used in either transmission or reflection configurations. The 

diffraction picture offers information regarding the symmetry of the crystal along a certain 

axis. In particular, the positions of the spots give information about the lattice and the intensity 

analysis reveal the composition of the basis.   

 

             

       
 
 
  The X-rays penetrate deeply in the material, so that many layers contribute to the 

reflected intensity and the diffracted peak intensities are very sharp (in angular distribution). To 

obtain sharp intensity peaks of the scattered radiation, the X-rays should be specularly reflected 

by the atoms in one plane. 
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For X-rays, the wavelength is determined from the relation λν /hchE ==  or 

Ehc /=λ , which equals a few Å if E is of the order of few keV. In fact, λ(Å) = 12.4/E(keV). 

X-rays are scattered mostly by the electronic shells of atoms in a solid, since the nuclei are too 

heavy to respond. 

Electrons can also have de Broglie wavelengths similar to the lattice constants of 

crystals. In this case , and for an electron energy E of 6 eV, the corresponding 

wavelength 

mhE 2/)/( 2λ=

mEh 2/=λ  is about 5 Å. Actually, if the kinetic energy of the electrons is 

acquired in an acceleration voltage potential U, such that E = eU, one has λ(Å) = 

12.28/[U(V)]1/2. For neutron diffraction we have to consider a similar relation, except that the 

electron mass m has to be replaced by the neutron mass M. Then, λ(Å) = 0.28/[E(eV)]1/2. 

When a wave interacts with the crystal, the plane wave is scattered by the atoms in the 

crystal, each atom acting like a point source (Huygens’ principle). Because a crystal structure 

consists of a lattice and a basis, the X-ray diffraction is a convolution of diffraction by the 

lattice points and diffraction by the basis. Generally, the latter term modulates the diffraction 

by the lattice points. In particular, if each lattice point acts as a coherent point source, each 

lattice plane acts as a mirror.  

The X-rays scattered by all atoms in the crystalline lattice interfere and the problem is 

to determine the Bravais lattice (including the lattice constants) and the basis from the 

interference patterns. The wave that is diffracted in a certain direction is a sum of the waves 

scattered by all atoms. Higher diffraction intensities will be observed along the directions of 

constructive interference, which are determined by the crystal structure itself.  

 

 

k k’ G 

 

The diffraction of X-rays by crystals is elastic, the X-rays having the same frequency (and 

wavelength) before and after the reflection. The path difference between two consecutive 

planes separated by d is 2·AB = θsin2d . First-order constructive interference occurs if  
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λθ =sin2d ,                                                                                                                             (1) 

 

condition known as Bragg’s law. 

The Bragg law is a consequence of the periodicity of the crystal structure and holds 

only if d2≤λ . This is the reason why the optical radiation is not suitable to detect the 

crystalline structure, but only X-rays and electron or neutron beams can perform this task. 

Higher order diffraction processes are also possible. The Bragg relation determines, 

through the angle θ, the directions of maximum intensity. These directions are identified as 

high-intensity points on the detection screen, the position of which reveal the crystal structure. 

For example, if the sample has a cubic crystal structure oriented such that the direction [111] 

(the diagonal of the cube) is parallel to the incident beam, the symmetry of the points on the 

detector screen will reveal a  symmetry axis. On the contrary, if the diffraction pattern has a 

 symmetry axis, the crystal is hexagonal, if it has a  symmetry axis it is a tetragonal 

crystal, whereas it is cubic if it shows both a  and a  symmetry axis. 

3C

6C 4C

4C 3C

The Bragg formula says nothing about the intensity and width of the X-ray diffraction 

peaks, assumes a single atom in every lattice point, and neglects both differences in scattering 

from different atoms and the distribution of charge around atoms. 

 A closer look at the interaction between the X-rays and the crystal of volume V reveals 

that the amplitude of the scattered radiation F (which is proportional to the amplitude of the 

oscillation of the electric and magnetic fields of the total diffracted ray) is determined by the 

local electron concentration ∑ ⋅=
G

G rGr )exp()( inn , which is a measure of the strength of the 

interaction, and has the same periodicity as the crystalline lattice. The diffraction intensity 

. For elastic X-ray scattering, the phase of the outgoing beam, with wavevector , 

differs from that of the incoming beam that propagates with a wavevector k through 

, so that  

2|| FI ∝ 'k

])'(exp[ rkk ⋅−i

 

∑ ∫∫∫ ⋅Δ−=⋅Δ−=⋅−=
G

G rkGrkrrkkr dVindVindVinF ])(exp[)exp()(])'(exp[)(            (2) 

 

where  is the scattering vector, which expresses the change in wavevector. The 

result in the above integral depends on the volume of the crystal. If the crystal has length  

and  primitive cells in the i direction (i = 1,2,3) of an orthogonal coordinate system (if the 

kkk −=Δ '

iL

iN
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crystal system is not orthogonal, a transformation of coordinates to the , , 1xx = 2xy = 3xz =  

axes should be performed), the integral along the i direction is given by 

 

])([sinc
)(

])(sin[)(2exp
2/

2/
iiii

ii

iii
ii

L

L
iii

i
NsL

s
Nsadxxs

a
i

i

i

ξπ
ξπ
ξπξπ

Δ−=
Δ−
Δ−

=⎥
⎦

⎤
⎢
⎣

⎡
Δ−∫

−

                  (3) 

  

where , is iξΔ  are the components of G and kΔ on the i axis and iii NLa /=  is the lattice 

constant on the same direction. The function xxx /sin)(sinc =  has a maximum value for x = 0, 

and tends to the Dirac delta function for large x.  

 Therefore, in large-volume crystals scattering occurs only if 

 

Gk =Δ ,                                                                                                                                    (4) 

 

case in which . (In finite-volume crystals there is a sort of “uncertainty” in the angular 

range of around G for which the scattering amplitude takes significant values: as the 

volume decreases, the angular range increases.) The above condition suggests that X-ray 

diffraction experiments reveal the reciprocal lattice of a crystal, in opposition to microscopy, 

which exposes the direct lattice (if performed with high-enough resolution). 

GVnF =

kΔ

 
 

                         

Bragg 
plane

 
 

The diffraction condition Gkkk =−=Δ '  can be rewritten as  or 

. In particular, the form 

Gkk +='

Gk ⋅++= 2' 222 Gkk Gkk hhh +='  of the diffraction condition 

represents the momentum conservation law of the X-ray photon in the scattering process; the 

crystal receives the momentum . For elastic scattering Gh− |||'| kk =  and thus , 022 =⋅+ GkG
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or , equation that defines the faces of the first Brillouin zone (the Bragg planes). 

The geometric interpretation of this relation (see the figure above) is that constructive 

interference/diffraction is the strongest on the faces of the first Brillouin zone. In other words, 

the first Brillouin zone exhibits all the k wavevectors that can be Bragg-reflected by the crystal.  

2/|| 2GGk =⋅

The diffraction condition is equivalent to Bragg’s law, which can be written for a 

certain set of planes separated by the distance mnpdd =  as mnpd/2sin)/2(2 πθλπ = , or 

, with  (for the direction of G with respect to the set of planes, 

see the figure illustrating the Bragg law).  

22 G=⋅Gk 321 bbbG pnm ++=

 

The Laue condition 
The diffraction condition  can be expressed in still another way: if we multiply both 

terms of this relation with the primitive translation vectors of the direct lattice, we obtain the 

Laue conditions 

Gk =Δ

 

11 2 sπ=Δ⋅ ka ,        22 2 sπ=Δ⋅ ka ,           33 2 sπ=Δ⋅ ka ,                                                         (5) 

 

where  are integers. The Laue equations have a simple geometrical interpretation:  lies 

simultaneously on a cone about , , and , i.e. lies at the common line of intersection of 

three cones. This condition is quite difficult to satisfy in practice. Moreover, in analogy to 

optical diffraction experiments, the Laue condition can be viewed as a condition of 

constructive interference between waves diffracted by two atoms separated by a primitive 

translation vector or, by extension, between waves diffracted by all atoms in the crystal. At 

Bragg reflection, the radiation scattered by all atoms arrives in phase at the detector, and 

intensity peaks are obtained. 

is kΔ

1a 2a 3a

 

The Ewald sphere 
The direction of interference peaks can be easily determined also via a simple geometrical 

construction suggested by Ewald. Namely, one constructs a sphere (a circle in two dimensions 

– see the red circle in the figure above) around a point O in the reciprocal lattice chosen such 

that the incident wavevector with O as origin, ends on an arbitrary lattice point A. The origin of 

the Ewald sphere (or circle) is not necessary a lattice point. 
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B 

O 

A 

 

The radius of the sphere (circle) is the wavenumber of the incident (and outgoing) radiation 

. A maximum intensity is found around a direction  if and only if the Ewald 

sphere (circle) passes through another point B of the reciprocal lattice. The direction  is 

determined by the origin O of the Ewald sphere and this lattice point on the surface 

(circumference), which is separated from the tip of k (from A) by a reciprocal lattice vector. It 

is possible that for certain incidence angles and wavelengths of the X-rays no such preferential 

direction  exists.  

|'||| kk ==k 'k

'k

'k

 

 
 

Therefore, to obtain peaks in the scattered intensity it is in general necessary to vary 

either the wavelength or the incidence angle of the incoming X-rays such that a sufficient 

number of reciprocal lattice points find themselves on the Ewald sphere (circle), in order to 

determine unambiguously the crystal structure. In the first method, called Laue method, the 

radius of the Ewald sphere (circle) is varied continuously (see, for example, the green circle in 
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the figure above), while in the second method, called the rotating crystal method or Debye-

Scherrer-Hull method, the Ewald sphere (circle) is rotated around the original lattice point with 

respect to which the Ewald sphere (circle) was constructed. The result is represented with the 

dark blue circle in the figure above. 

In another diffraction method (the Debye-Scherrer method) polycrystalline samples are 

used, which are either fixed or rotate around an axis. In this case, the incident beam is scattered 

by only those crystallites (randomly oriented) with planes that satisfy the Bragg condition. 

Because the sample contains crystallites with all orientations, the diffraction pattern on the 

screen is no longer formed from discrete points, but from concentric circles. 

 

The influence of the basis on the scattered amplitude 
If the Laue/diffraction condition Gk =Δ  is satisfied, an explicit account of the basis influence 

implies that the assumption of point/spherical sources at the lattice points have to be modified. 

In this case, we have found that  

 

GG rGr NSdVinNVnF cell =⋅−== ∫ )exp()( ,                                                                             (6) 

 

where , N is the total number of lattice points, and ∫ ⋅−Ω= −
cell dVinn )exp()(1 rGrG

 

∫ ⋅−= cell dVinS )exp()( rGrG                                                                                                      (7) 

 

is called the structure factor. It is defined as an integral over a single cell, with r = 0 at one 

corner. If there is only one lattice point in the basis and the electron distribution )()( rr δ≅n , 

. 1=GS

If there are s atoms in the basis at positions , j = 1,2,..,s, the total electron density can 

be expressed as a superposition of electron concentration functions  at each atom j in the 

basis, so that the structure factor is expressed as integrals over the s atoms of a cell: 

jr
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where  and jrrρ −= ∫ ⋅−= dVinf jj )exp()( ρGρ  is the atomic form factor, which depends 

only on the type of element that the atom belongs to. The integral has to be taken over the 

electron concentration associated with a single atom. 

The atomic form factor is a measure of the scattering power of the jth atom in the unit 

cell. If the charge distribution has a spherical symmetry, one can use spherical coordinates 

chosen such that the polar direction is along G. In this case, ,  ϕρϕπρ dddV sin2 2=

ϕρϕ coscos|||| G=⋅⋅=⋅ ρGρG , where ϕ is the angle between ρ and G, and the atomic form 

factor becomes 

 

∫∫∫
∞∞

=−=
0

2

00

2 )/(sin)(4sin)cosexp()(2 ρρρρπϕϕϕρρρπ
π

dGGρndiGdρnf jjj .                 (9) 

 

The atomic form factor decreases rapidly with the distance and, in the limit 0→ρ , when 

0/sin →ρρ GG , 

 

Zdρnf jj =→ ∫
∞

0

2)(4 ρρπ ,                                                                                                     (10) 

 

where Z is the number of electrons in an atom. Also, when 0=Δ= kG  (for a diffracted ray 

collinear with the incident ray), the phase difference vanishes and again . ZGf j == )0(

f can be viewed as the ratio of the radiation amplitude scattered by the electron 

distribution in an atom to that scattered by one electron localized at the same point as the atom. 

The overall electron distribution in a solid, as obtained from X-ray diffraction experiments, is 

almost the same as for free atoms, i.e. atoms in which the outermost (valence) electrons are not 

redistributed in forming the solid. X-ray diffraction experiments are thus not very sensitive to 

small redistributions of electrons. 

 

Example: consider a bcc lattice as a sc lattice with a basis consisting of two atoms at [[000]] 

and [[1/2,1/2,1/2]]. The primitive lattice vectors for the Bravais and the reciprocal lattices are 

in this case = ax, = ay, = az, and 1a 2a 3a ,)/2(1 xb aπ=  ,)/2(2 yb aπ=  zb )/2(3 aπ= , 

respectively. The diffraction peak of the sc lattice that is labeled by (mnp) corresponds to  

))(/2(321 zyxbbbG pnmapnm ++=++= π  and for this diffraction peak 
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The bcc diffraction intensity is given by  
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So, for the bcc structure with the same type of atoms, the (mnp) diffraction peaks of the sc 

lattice disappear whenever pnm ++  is an odd integer. In particular, it disappears for a (100) 

reflection (see the figure below) since the phase difference between successive planes is π, and 

the reflected amplitudes from two adjacent planes are out-of-phase/destructive interference 

occurs. 
 

 

π 

2π 

 

Observation: for a sc lattice with one atom in the basis, the diffraction intensity would have 

been the same, irrespective of the parity (even or odd) of pnm ++ . This example illustrates 

the effect of the basis on the diffraction intensity. 



Crystal binding 
 

The stability of solid state materials is assured by the existing interactions (attractive and 

repulsive) between the atoms in the crystal. The crystal itself is definitely more stable than the 

collection of the constituent atoms. This means that there exist attractive interatomic forces 

and that the energy of the crystal is lower than the energy of the free atoms. On the other 

hand, repulsive forces must exist at small distance in order to prevent the collapse of the 

material. One measure of the strength of the interatomic forces is the so-called cohesive 

energy of the crystal, defined as the difference between the energy of free atoms and the 

crystal energy. Similarly, the cohesive energy per atom  is defined as the ratio between the 

cohesive energy of the crystal and the number of atoms. Typical values of the cohesive energy 

per atom range from 1 to 10 eV/atom, with the exception of inert gases, where the cohesive 

energy is about 0.1 eV/atom. In particular, the cohesive energy determines the melting 

temperature of solid state materials. Crystals with ||  < 0.5 eV have weak crystal bindings, 

while the others are characterized by strong crystal bindings. 

0U

0U

 

                      
 

As shown in the figure above, the potential/binding energy U, which describes the interaction 

between two atoms, approach 0 (or infinity) for an interatomic distance R → ∞ (or to 0), and 

has a minimum at a certain distance 0RR = . It is composed of an attractive energy part, 

dominant at , and a repulsive energy part that prevails at 0RR > 0RR < . Then, the most stable 

state of the system, which occurs at the lowest possible energy, is characterized by the 

cohesive energy , the corresponding interatomic distance, , being known as the 0U 0R
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equilibrium interatomic distance. The last parameter has typical values of 2−3 Å, which 

implies that the stability of the crystal is determined by short-range forces. 

 The interatomic force, defined as 

 

RURF ∂−∂= /)( ,                                                                                                                     (1) 
 

is negative (attractive) for , and positive (repulsive) for 0RR > 0RR < . The attractive and 

repulsive forces, which have different origins, cancel each other at the equilibrium interatomic 

distance. 

The general form of the potential energy is 

 

mn r
B

r
ArU −=)( ,     with n > m.                                                                                              (2) 

 

 The repulsive force between atoms in the solid has the same origin in all crystals: 

Pauli exclusion principle, which forbids two electrons to occupy the same orbital (the same 

quantum state). The repulsive force is characterized (see the formula above) by the power-law 

expression , with n > 6 or, sometimes, by the exponential expression nrAU /=

)/exp( ρλ rU −= , where λ and ρ are empirical constants that can be determined from the 

lattice parameters and the compressibility of the material. Which expression is better suited to 

describe the repulsive force depends on which one better fits with experimental values. The 

repulsive potential is short-ranged and thus it is effective only for nearest neighbors. 

The attractive forces create bonds between atoms/molecules in the solid, which 

guarantee the crystal stability and are of different types depending on the crystal. Only the 

outer (valence) electrons participate in the bonding. There are several types of bonding, 

depending on the mechanism responsible for crystal cohesion: ionic, covalent and metallic, 

which give rise to strong crystal bindings, and hydrogen bonding and van der Waals 

interaction, which determine weak crystal bindings. 

 

Crystal binding in inert/noble gases. Van der Waals-London interaction 
The crystals of inert gases have low cohesion energy and melting temperature, and high 

ionization energies. They are the simplest crystals, with an electron distribution close to that 

of free atoms. From an electrical point of view they are isolators, and from an optical point of 

view, are transparent in the visible domain. The weak binding between the constituent atoms 
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favors compact crystalline structures, in particular fcc Bravais lattices with one atom in the 

basis (the only exceptions are He3 and He4, which crystallize in the hcp crystal structure).  

 Individual atoms of Ne, Ar, Kr, or Xe have completely occupied external shells, with a 

spherically symmetric electronic charge distribution. In crystals, the presence of other atoms 

induces a redistribution of the electric charge and a perturbation of the spherical charge 

symmetry that can be described within the model of fluctuating dipoles. Coulomb attraction 

can occur between two neutral spheres, as long as their internal charges polarize the spheres. 

In a classical formalism (valid since electrostatic forces have a long range), this model 

assumes that the movement of the electron in atom 1 induces an instantaneous dipole moment 

 which generates an electric field  1p
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at the position of atom 2 separated from atom 1 through a distance . This electric 

field induces a fluctuating dipole in atom 2 (the distance between the atoms as well as the 

magnitude and direction of  fluctuate in time), with a moment  

|| 1212 r=r

1p

 

)( 122 rEp α= ,                                                                                                                          (4) 

 

where α is the atomic polarizability. The energy of the dipole-dipole interaction between the 

two fluctuating dipoles is 

 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ⋅⋅
−

⋅
=⋅−= 5

12

122121
3

12

21

0
12212

))((3
4

1)()(
rr

U attr
rprppprEpr

πε
,                                          (5) 



Crystal binding 4

 

and its minimum value is attained when , case in which, replacing the value of 

 in (5) with its expression in (4), we get 
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This van der Waals (or London) interaction is the dominant attractive interaction in noble 

gases. The higher-order contributions of the dipole-quadrupole and quadrupole-quadrupole 

interactions are characterized by the respective potentials  and , and do not 

contribute significantly to the cohesion energy of the noble gases crystals. The same  

dependence of the energy is recovered in a quantum treatment, in the second-order 

perturbation theory. 

8
121 / rC− 10

122 / rC
6

12/ rC−

 Assuming a power-law expression for the repulsive forces with n = 12, the interaction 

potential is given by the Lenard-Jones formula 
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where the parameters γ and σ are determined from X-ray and cohesion energy experiments.  

 The interaction energy of atom 1 (atom i, in general) with all other atoms in the crystal 

is then  
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and the energy of the crystal composed of N atoms is icryst UNU )2/(= . For a periodic 

arrangement of atoms in the lattice, with nearest-neighbors at a distance R,  and Rpr ijij =
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where 
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are rapid convergent series, that can be calculated after the crystalline structure is determined 

by X-ray measurements. Their values are, respectively, 12.132 and 14.454 for the fcc 

structure, with almost the same values for hcp structures.  

 The crystal energy is minimum value for the R value which is the solution of 

, i.e.  for  =∂∂ RU cryst / 0])/(6)/(12[2 5
6

11
12 =− RSRSN σσγ

 
6/1

6120 )/2( SSR σ= .                                                                                                             (11) 

 
The ratio 09.1/0 =σR  for a fcc Bravais lattice, the corresponding cohesion energy per atom 

(at zero temperature and pressure) being  
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Quantum corrections reduce the binding energy above by 28%, 10%, 6%, and 4% for Ne, Ar, 

Kr, and Xe, respectively. The quantum corrections are more important for inert gas crystals 

with smaller equilibrium interatomic distance (smaller lattice constants). 

  The above model determines also the compressibility modulus of noble gases with 
volume V (and volume per atom 2// 3RNVv == ), defined at low temperatures as 
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 Ne Ar Kr Xe 

R0 (Å) 3.05 3.74 4 4.34 

U0 (eV) -0.024 -0.085 -0.118 -0.171

Tmelt (K) 24 84 117 161 

γ (eV) 0.031 0.01 0.014 0.02 

σ (Å) 2.74 3.4 3.05 3.98 

Β0 (109 Pa) 1.45 2.95 3.48 3.7 
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Ionic binding  
The ionic binding is found in ionic crystals formed from positive and negative ions, for 

example Na+ and Cl− in NaCl. In this bonding type, electrons are transferred from the low 

electronegative atom, which becomes a positive ion, to the high electronegative atom, which 

is transformed into a negative ion (see the figure below).  

 

 
 

The electronegativity is the average of the first ionization energy and the electron affinity. It 

measures the ability of an atom or molecule to attract electrons in the context of a chemical 

bond. In NaCl the ionization energy (actually the first ionization energy Ei, which is the 

energy required to move an electron from a neutral isolated atom to form an ion with one 

positive charge: Na + Ei →Na+ + e−) of Na is 5.14 eV and the electron affinity (the energy Ea 

absorbed when an electron is added to a neutral isolated atom to form an ion with one 

negative charge: Cl + e−→ Cl− + Ea) of Cl is 3.56 eV. The electron affinity is negative if 

energy is released in the process. For most elements the electron affinity is negative, but it 

takes positive values in atoms with a complete shell. The net energy cost of the ionic bonding 

(i.e. the difference between the energy of the ions and that of the two atoms) is then Ei − Ea = 

5.14 eV − 3.56 eV = 1.58 eV per pair of ions, without taking into account the Coulomb 

energy between the ions.  

In general, the electronegativity increases with the group number in the periodic 

element table, from the first to the seventh group (elements in the eight group have complete 

shells). Depending on the difference in electronegativity between two atoms, the bonding 

between them is 

• Ionic (for large difference). Example: Na-Cl.  

• Polar covalent bonding (for moderate difference). Example: H-O.  

• Covalent bonding (for small difference). Examples: C-O, O-O 
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In ionic crystals the bonding is achieved by the long-range electrostatic force and so, a 

classical treatment is meaningful. The electronic configuration of the ions is similar to that of 

inert/noble gases, i.e. the electronic charge has a spherical symmetry, which is only slightly 

perturbed in crystal. The perturbations are localized in the regions in which the ions are 

closer. In particular, in NaCl the electronic configurations of the Na+ and Cl− ions are similar 

to that of noble gases Ne10 (1s22s22p6) and Ar18 (1s22s22p63s23p6), respectively (see below). 

 

= Ne                    = Ar  
 

In ionic crystals, the cohesion energy  is no longer equal to the difference between 

the attractive and the repulsive potentials that act upon an ion at the equilibrium position, 

denoted in this case by  (and which still determines the echilibrium interatomic 

distance), but has a correction term equal to 

0U

minU

ia EE − , such that the difference between the 

energy of free atoms and of the ions in the crystal (which defines the cohesion energy) is 

. In other words, ia EEUU −+= min0

 

ia EEU −++→+ −+
0

crystal

ClNaClNa 43421  

 

and  is the energy released per molecule when the neutral constituents form a 

ionic crystal.. 

ia EEU −+min

The Coulomb force between one positive Na ion and one negative Cl ion, separated by 

a distance R is given by 

 

2
0

2

4 R
eFCoulomb πε

−=                                                                                                               (14) 

 

with R = 2.81 Å the nearest-neighbor distance in NaCl, so that the respective attractive 

potential energy, 
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equals −5.12 eV per pair. It follows then that the net energy gain in the ionic bonding, is    

5.12 eV − 1.58 eV = 3.54 eV per pair of ions.  

The electrostatic energy gain per NaCl molecule in a fcc crystal is obtained by adding 

different contributions:  

• that of the (opposite type) 6 nearest-neighbors of a certain ion, 
R

eU
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2

1 4
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−= , 

• that of the 12 second nearest-neighbors (of the same ion type), 
24

12
0

2

2
R

eU
πε

= ,  

• that of the 8 third nearest neighbors of opposite type, 
34
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−= , and so on.  

The result is 
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The series above converge eventually to 
R

eM
R

eUion
0

2

0

2

44
748.1

πεπε
−=−= , where M 

is the Madelung constant, which takes specific values for each crystal structure. For other 

crystal structures: CsCl, zinc blende, and wurtzite, we have, respectively, M = 1.763, 1.638 

and 1.641. (If the series is slowly convergent or even divergent, the terms in the sum are 

rearranged such that the terms corresponding to each cell cancel each other – the cell remains 

neutral in charge.) The total attractive energy in a NaCl crystal with N ion pairs is given by 

, where the factor 2 in the numerator accounts for the fact that there are 

two types of ions: Na and Cl, and the factor 2 in the denominator is introduced in order to 

count every ion pair only once. For NaCl, Uattr = 861 kJ/mol (experiments give 776 kJ/mol). 

The discrepancy (of about 10%) between the experimental and theoretical values is explained 

by the existence of the (non-classical) repulsive forces. 

2/2 NUU ionattr ×=

Similarly, if we add up the repulsive potential felt by an atom from all others (the 

exponential form is used now), we obtain 

 



Crystal binding 9

)/exp()/exp( ρλρλ RzrU
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                                                                            (17) 

  
where we consider that R<<ρ  and z is the number of nearest neighbors. The interaction 

energy of the whole crystal, which consists of N ion pairs/molecules is 
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and its minimum value per molecule,  
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occurs for the equilibrium interatomic distance R0 found from the condition =dRdU cryst /  

. The first term (the Madelung term) in (19), 

which expresses the electrostatic contribution of the interactions, is dominant since 

0)4/()/exp()/( 2
0

2 =+−− RMeRz περρλ

0R<<ρ .  

With the same definition as above, the compressibility modulus takes now the form 
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where  is the ratio between the volume per particle v and the third power of the 

nearest-neighbor distance. f = 

3/ Rvf =

33/8 , 2 and 33/16  for CsCl, NaCl, and zinc blende, 

respectively. 

 

 LiF LiCl NaF NaCl KF KCl RbF RbCl 

R0 (Å) 2.01 2.56 2.31 2.82 2.67 3.15 2.82 3.29 

U0 (eV) -10.5 -8.45 -9.31 -7.86 -8.23 -7.1 -7.85 -6.84 

B0 (1010 Pa) 6.71 2.98 4.65 2.4 3.05 1.75 2.62 1.56 

λ (102 eV) 3.08 5.1 6.24 10.93 13.63 21.35 18.54 33.24 

ρ (Å) 0.291 0.33 0.29 0.321 0.298 0.326 0.301 0.323 
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Covalent bonding  
The covalent bonding forms in molecules composed of identical particles, for example 

hydrogen. In this case two atoms form a (homopolar) bond by sharing a pair of electrons (one 

from each atom, with opposite spins). Most atoms can form more than one covalent bond. For 

example, C has four outer electrons (of 2sp3 type) and thus can form 4 covalent bonds. The 

covalent bond is highly directional and different bonds repel each other. Therefore, the 

corresponding crystal has generally a low packing ratio. For example, C and Si can have 

diamond structure, with atoms joined to 4 nearest neighbors at tetrahedral angles; this 

structure has a packing ratio of only 0.34 compared to 0.74 for close-packed structures. The 

electrons in covalent bonds are strongly localized along the bond, so that the crystals are 

semiconductors or isolators, with not very good electrical conductivity. 

To describe the covalent bonding in hydrogen, we introduce the normalized atomic 

orbitals 1s for the j (j = 1,2) electron that can belong to either atom A or B as )(,
1 jBA

sψ , so that 

the normalized wavefunction of the total system can be either symmetric (labeled with +) or 

antisymmetric (labeled with −) 
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where  is the overlap integral. Note that the symmetric 

wavefunction for ionic crystals can be expressed as . 
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The symmetric wavefunction (also called singlet) corresponds to two antiparallel spin, 

with quantum number S = 0 of the operator (with S the total spin), while the 

antisymmetric wavefunction (also called triplet) corresponds to parallel spins, i.e. S = 1 (with 

the spin projection quantum number ms = −1, 0, and 1; there are three antisymmetric 

wavefunctions!). The form of the wavefunctions above is determined from the condition that 

the total wave function for fermions (including spin) must be antisymmetric upon particle 

exchange. 

2S

The energy eigenvalues are represented above as a function of the distance between 

the atoms. A bound state can exist in the singlet state, with E+ = −3.14 eV if the covalent 

bonding forms between H atoms, i.e. the strongest binding occurs if the spins of the two 

electrons are antiparallel.  

 

 
 

To characterize the crystalline structure of diamond one must generalize the previous 

formula in order to incorporate the p atomic orbitals. Indeed, the last occupied orbitals of 

these materials are: C(2s22p2), Si(3s23p2), and Ge(4s24p2). When both s and p-type orbitals are 

involved, they hybridize (see figures below). [The s atomic orbitals have quantum numbers n 

= 1,2,3… (principal quantum number), l = 0 (orbital quantum number), and m = 0 (magnetic 

quantum number; the projection of l). The p orbitals have n = 1,2,3…, l = 1, and m = −1,0,1.] 

The s and p atomic orbitals hybridize when the energy difference between them is much 

smaller than the binding energy. 

 

                 
 

E- 

atom A atom B 

 
 

E+ 
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 In particular, when one s orbital with wavefunction sΨ  and one p orbital, say the  

orbital, with wavefunction , hybridize, the result is two linear sp orbitals (see figure 

above) with wavefunctions 

xp

xpΨ

 
)(2 2/1

1 xps Ψ+Ψ=Ψ − ,         .                                                         (22) )(2 2/1
2 xps Ψ−Ψ=Ψ −

 

                
 

On the contrary, sp2 hybrid orbitals form between one s orbital and two p orbitals, the 

resulting planar structure (see figure above) having orbitals arranged in plane with an angle of 

120° between them. The electrons in the hybrid orbitals are strongly localized and form σ 

bonds; they do not participate in electrical conduction. One p orbital remains perpendicular to 

the plane, where it forms a π bond with other out-of-plane p orbitals from neighboring atoms; 

this is the case of graphite or graphene (bidimensional crystal). The electrons in the π orbitals 

are delocalized and participate in electrical conduction. The three hybrid orbitals are given by 

 

)2(3 2/1
1 xps Ψ+Ψ=Ψ − ,                                                                                                     (23) 

]2/3)2/1([3 2/1
2 yx pps Ψ+Ψ−Ψ=Ψ − ,  ]2/3)2/1([3 2/1

3 yx pps Ψ−Ψ−Ψ=Ψ − . 
 

Similarly, the electronic configurations that forms from one s orbital and three p 

orbitals is called sp3. This electronic configuration is characteristic for diamond. The angular 

part of the s and p orbitals are (in polar coordinates) 

 
2/1)4( −=Ψ πs ,                                                                                                                (24) 

ϕθπ cossin)4/3( 2/1=Ψ
xp ,    ,      ϕθπ sinsin)4/3( 2/1=Ψ

yp θπ cos)4/3( 2/1=Ψ
zp
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so that the four hybrid atomic orbitals that are linear combinations of atomic orbitals form a 

tetrahedron (see figure below) and are given by 

 

))(2/1(1 zyx ppps Ψ+Ψ+Ψ+Ψ=Ψ ,               (25a) 

))(2/1(2 zyx ppps Ψ−Ψ−Ψ+Ψ=Ψ ,               (25b) 

))(2/1(3 zyx ppps Ψ−Ψ+Ψ−Ψ=Ψ ,               (25c) 

))(2/1(4 zyx ppps Ψ+Ψ−Ψ−Ψ=Ψ .               (25d) 

 

C, Si and Ge form crystals in which the covalent binding is dominant, the van der 

Waals contribution to the cohesion energy, also encountered in crystals from a single element, 

being negligible. However, in crystals with a basis composed of two atoms A and B, with n 

and, respectively,  valence electrons, the covalent binding is accompanied by a ionic 

contribution. The resulting bond is called polar covalent bond. The ionic contribution (in 

fraction) is 0.18 in SiC, 0.26 in GaSb, 0.32 in GaAs, and 0.44 in InP. Similarly, in ionic 

crystals the covalent binding can also contribute to the cohesion energy, the fraction of the 

ionic contribution being only 0.86 in AgCl, 0.94 in NaCl, and 0.96 in RbF. When covalent 

bonding forms between different atoms, the hybrid orbitals considered above are modified, as 

can be seen from the figures below. 

n−8

 

               
 
Electronic configuration in the CH4 molecule. 
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Bonding between the 1s orbitals of the H atom and the 2px and 2py orbitals of O atom 

in H2O (a) without, and (b) with hybridization 

 

Covalent crystals are characterized by: 

• high melting temperatures (the cohesion energy per atom is about −10 eV) 

• hardness (but also friable) 

• their conductivity depends strongly on temperature and impurity atoms 

• high value of the dielectric constant 

• generally transparent in IR, but strongly absorbent in visible and near-IR. 

 
Note: Crystal bonds form between valence electrons, i.e. the electrons on the outer shells, 

which participate in chemical reactions/determine the physical properties of the material. In 

contrast, core electrons are those on inner shells. 

 

Hydrogen binding of crystals 
Because neutral hydrogen has only one electron, it should form a covalent bond with only one 

other atom. However, just as oppositely charged ions are attracted to one another and can 

form ionic bonds, the partial charges that exist at different atoms in polar covalent bonds can 

interact with other partially charged atoms/molecules. Particularly strong polar covalent 

bonds are found, for example, when a hydrogen atom bonds to extremely electronegative ions 

such as O in water/ice (see the figure below, left), F (see the figure below, right), N or Cl. The 

partial charges in the figure below are denoted by δ. The hydrogen bond forms between the 

hydrogen atom with a strong partial positive charge and electronegative ions with strong 
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partial negative charges in neighboring molecules. The binding energy is of the order of 0.1 

eV. For example, the cohesion energy per molecule in ice is −0.3 eV.  

 
 

        
 
 

The hydrogen bond is weaker than, although similar to, ionic bond since it forms 

between partial charges rather than full (complete) charges. In hydrogen bonds the hydrogen 

atom is the hydrogen bond donor and the electronegative ion is the hydrogen bond acceptor. 

As the polar covalent binding, the hydrogen bond can be viewed as a mixture of ionic and 

covalent bonding, the ionic bonding being dominant. For example, in the typical hydrogen 

bond that links two H2O molecules in ice, the binding can be considered as a superposition of 

three binding types: 

 
O (covalent) H (ionic) O 

O (ionic) H (ionic) O 

O (ionic) H (covalent) O 

 
In hydrogen, the proton radius is with five orders of magnitude smaller than the radius 

of any other ion, and so it allows the existence of only two nearest neighbors of the proton 

(more than two atoms would get in each other’s way), i.e. the hydrogen bond is directional. 

Despite it is weak, the hydrogen bond is extremely important in living organisms, 

which are mainly composed of water, since water as well as proteins and nucleic acids posses 

a great capacity to form hydrogen bonds. In particular, the hydrogen binding occurs as intra-

molecular binding between the organic complementary bases thymine and adenine, and 

cytosine and guanine in DNA. It can also be encountered between constituents of crystals 

such as KH2PO4, KD2PO4 (KDP), Ca(OH)2, or Mg(OH)2.  

 

 

 

hydrogen bond 

hydrogen bond 
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Metallic bonding 
The metallic bonding can be understood as the bonding between positively charged metallic 

nuclei/ions and delocalized conduction electrons, seen as a “sea of free electrons”. It prevails 

in elements in which the valence electrons are not tightly bound with the nucleus (in metals, 

for example). However, in the metallic bond we cannot speak about ions, since there is no 

particular electron that is “lost” to another ion. Unlike other bonding types, the metallic 

bonding is collective in nature, so that no single “metallic bond” exists. It is neither intra- nor 

intermolecular since no molecule can be distinguished in metals. Metallic bonding can be 

understood as a nonmolecular, extremely delocalized communal form of covalent bonding. 

The delocalization is most pronounced for s and p electrons, with l = 0 and l = 1, respectively, 

being much weaker for d and f electrons, which have quantum numbers l = 2 and l = 3, 

respectively. 

 

 
 

In metals, an atom achieves a more stable configuration by sharing all its valence 

electrons with all other atoms in the crystal. However, besides delocalization, metallic 

bonding also requires the availability of a far larger number of delocalized energy states than 

of delocalized electrons. These states are referred to as electron deficiency; they assure the 

kinetic energy for delocalization.  

The metallic bonding is encountered, for example, in alkaline metals such as Li, K, Na, 

with electronic configurations that resemble those of noble gases with an additional s electron 

on the outer shell. Having few electrons on their outer shells, alkali metals have only partly 

filled energy levels, and therefore are electron deficient. In forming the crystal, the 

wavefunctions of the outer s electrons overlap with those of their nearest neighbors, and the 

electrons become delocalized. Their dynamics resembles that of free electrons, so that in 

alkaline metals the lattice is occupied by the positively charged ions with the noble gas 
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structure (they occupy in fact only as much as 20% from the volume of the crystal), while the 

valence electrons occupy the remaining volume. Unlike in covalent crystals, where the 

electronic charge is distributed in a strongly nonuniform manner (the bonds are spatially 

oriented), the electronic density in metallic crystals is highly uniform. This explains the high 

elasticity and malleability of these materials. 

The total Coulomb potential, which includes electron-electron, electron-ion and ion-

ion interactions, is iiieeeCoul UUUU −−− ++=  < 0 (the first and third terms on the rhs are 

positive, the middle one is negative). Therefore, the attractive potential is of electrostatic 

nature, being balanced by the repulsive interaction due to the Pauli exclusion principle. It 

should be mentioned that it is not necessary for metals to have metallic bonding.  For 

example, many transition metals show covalent properties (not all electrons participate in 

covalent bonds, and are good electrical conductors). 

 
Note: In transition metals (Fe, Co, Ni, Cu, Zn, Ag, Au, Mn, etc.) the d orbitals are only 

partially occupied and the outermost s orbitals are fully occupied.  

Example: 4s2–full, 3d–incomplete. 

 
Crystals with metallic bonding are usually characterized by 

• high electrical and thermical conductivity, with weak temperature dependence 

• high elasticity 

• high optical reflectivity in a large frequency bandwidth 

• broad range of melting temperatures: low melting temperatures for alkaline metals (Li, 

Na, K, Rb, Cs), intermediate for noble metals (Cu, Ag, Au), and high values for metals 

such as Ti, Zr, Mo, W. The corresponding cohesion energies vary between −1 eV and 

−5 eV. 
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Let us consider a crystalline material consisting of a large number  of heavy positively-

charged ions (composed of the nucleus and the valence electrons on the inner atomic orbitals) 

with masses  and situated at positions , α = 1,.., , surrounded by and in interaction 

with  electrons on the outer atomic orbitals with masses m and at positions denoted by ,  

i = 1,.., . The total Hamiltonian of the system is then 

ionN

αM αR ionN

elN ir

elN
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The terms of the right-hand-side denote, in order, the kinetic energy of the electrons, the 

kinetic energy of the ions, the (Coulomb) interaction energy of electron pairs, the interaction 

energy of ion pairs, and the interaction energy between electrons and ions.  

 Since , the electron velocities are much higher than the ion velocities, so that 

the electrons “see” a “frozen” distribution of ions, while the ions can only sense the average 

(not instantaneous!) spatial distribution of electrons. In other words, for a given ion 

configuration the electrons are in a quasi-equilibrium state that is slowly varying in time due 

to ion’s motion, whereas the ions evolve slowly in a potential distribution generated by the 

average configuration of the electrons. This adiabatic approximation, known also as the Born-

Oppenheimer approximation, allows a factorization of the total wavefunction of the system, 

 with , 

αMm <<

),( RrΨ },...,,{ 21 elNrrrr = },...,,{ 21 ionNRRRR =  into an electronic part, );( Rrψ , in 

which the ion’s positions are considered as parameters, and into an ionic part, )(Rφ : 

 

)();(),( RRrRr φψ=Ψ .                                                                                                           (2) 

 

These electronic and ionic parts satisfy the following equations: 
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where E is the energy of the whole system and  is the energy of the (sub)system of 

electrons. 

elE

 Let us assume further that in a crystalline lattice with s atoms in the basis, the ions 

move around their equilibrium positions , so that . Then, the 

interaction energy between pairs of ions can be expanded in a Taylor series around the 

equilibrium positions. Taking into account that 

0
αR 00 || αααα RuRR <<=−
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since the force that acts upon an ion at equilibrium (which is proportional to this derivative) 

vanishes, we find that 
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and the indices μ = x,y,z (and ν) denote the projections of the position vectors on a Cartesian 

coordinate system, the first spatial derivative of  vanishes due to the requirement that the 

force (which is proportional to this derivative) that acts upon an ion at equilibrium vanishes, 

and higher-order terms in the Taylor expansion are neglected. The last approximation is called 

harmonic. Because the first term in the Taylor expansion of  is constant, it can (together 

with ) be included in the reference energy of the system, so that in the harmonic 

approximation the lattice dynamics is described by the Hamiltonian 

ionU

ionU

elE
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The dynamics of the lattice oscillations can then be expressed in the canonical form as 
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and the equation of motion for the displacement of ion α in the μ direction,  

 

0
,

=+ ∑ ν
β

νβ

μν
αβ

μ
αα uAuM && ,                                                                                                          (10) 

 

describes in fact a set of coupled harmonic oscillators. The coupling strength with 

neighboring ions is characterized by the coefficients . A harmonic potential energy 

corresponds to forces that are linear in the displacements. 

μν
αβA

In the harmonic approximation one can view the lattice vibration as an interaction of 

connected elastic springs (classical harmonic oscillators), as in the figure below. The lattice 

oscillations are thus similar to elastic waves that propagate through such a chain of connected 

springs. If an atom is displaced from its equilibrium site by a small amount, it will tend to 

return to its equilibrium position due to the force acting on it. This results in lattice vibrations. 

Due to interactions between atoms, various atoms move simultaneously, so we have to 

consider the motion of the entire lattice. 
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 Note that in coupled harmonic oscillators, the force that acts on an ion α  from other 

ions β, given by ,  is proportional to the relative displacement, 

. This means that the expression of the force should be  
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This is possible only if the following equation is satisfied: 
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The physical relevant solutions for the system of harmonic oscillators are of plane-

wave type, i.e. are oscillatory in time, with the same frequency for all ions. These are the 

normal oscillations. Because of the periodicity of the crystalline lattice, the amplitude of ions’ 

displacements in different unit cells are the same, so that only the phase of the oscillations 

vary from one unit cell to the other. So, for a crystal with s atoms in the basis and N 

elementary cells, },{ nχα = , χ = 1,…,s, n = 1,…,N, we look for solutions of the form 

( ) sNNion =
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χλλ

μ
χ ω−⋅=                                                                   (13) 

 

where  is the amplitude of the normal oscillations of type λ (several longitudinal and 

transverse oscillations) that propagate along the direction , and  is the 

polarization vector of χ-th atom in the unit cell (not normalized to unity!). Introducing this 

solution in (10), we find that the polarization vectors of the atoms satisfy the following system 

of 3s equations (ν = 1,2,3, and γ = 1,…,s) 

)(,0 kλu

||/ kk )(keχλ
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where . In general, we have a system of  

equations, where d is the number of dimensions. 

)](exp[)( 00
, χγ

μν
γχ

μν
χγ nm

m
mn iAB RRkk −⋅= ∑ ds

It can easily be demonstrated that the matrix of the coefficients  is hermitic, 

which implies the orthogonality of the polarization vectors 

)(kμν
χγB
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χλ δsee =∑ kk ,                                                                                                     (15) 

 

from which it follows that the system of 3s equations has non-trivial solutions only when 

 

0)()(Det 2 =− μνχγλχ
μν
χγ δδω kk MB .                                                                                      (16) 

 

This condition represents a characteristic equation for , which has 3s solutions/branches 

for a given k, called the normal oscillation frequencies of the lattice, with corresponding 

polarization vectors . The dependence of the oscillation frequencies 

2
λω

)(kμ
χλe λω  on k is called 

the dispersion relation of the normal oscillation of the λ-th branch. 

 From the definition of , if  are real, it follows that  

and thus  

)(kμν
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χγ
μν
χγ BB
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χλ ee ,                                                                              (17) *22 )]([)( kk −= λλ ωω

 

or )()( kk −= λλ ωω  since the oscillation frequencies are real and positive. 

 If, in three dimensions, we consider a lattice with one atom in the basis, i.e. with s = 1, 

then we have three oscillations branches (there are three degrees of freedom for each atom), λ 

= 1,2,3, and in the limit k = 0 of long wavelengths, 
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the last equality following from (12). Because the left-hand-side of (19) vanishes and the 

polarization vectors are finite, it follows that 0)0( =λω  and the dispersion law for the three 

branches in the long-wavelength limit can be written as  

 

kvac )()( , kk λλω = .                                                                                                                (20) 

 

The parameters  are called acoustic velocities since a similar relation as that above holds 

for acoustic waves propagating in a continuum, elastic and isotropic medium. Moreover, the 

oscillations that take place in the direction of the propagation vector k are called longitudinal 

and those normal to k are transverse: we have one longitudinal and two transverse acoustical 

oscillations. The figure below illustrates the dispersion relation of a crystal, in which we can 

identify only acoustical branches, which means that the there is only one atom in the basis of 

this crystal. 

λ,acv

 

 

 
 For complex lattices, with s > 1, there are again three oscillation branches with an 

acoustic-like dispersion relation in the limit k → 0, as above, corresponding to the situation in 

which all atoms in the lattice have the same displacements (oscillate in phase), and thus the 

complex structure of the lattice is not manifest. These are the acoustic oscillation branches. 

However, in this case we have also 33 −s  oscillation branches with no analog in the dynamic 

of continuum media and for which the dispersion relation in the long-wavelength limit has the 

form 
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2
0)( kλλλ βωω −=k .                                                                                                            (21) 

 

These are the optical oscillation branches, characterized by the cut-off oscillation frequencies 

λω0 ; the parameters λβ  are generally positive. This type of oscillation branches is called 

optical because, when the unit cell consists of ions with different type of charges (positive and 

negative), these oscillations form an instantaneous dipolar moment that interacts strongly with 

the electromagnetic radiation. In this case ions with different sign oscillate in anti-phase, i.e. 

their displacements are in opposite directions. As for the acoustic oscillations, in three 

dimensions we have one longitudinal and two transverse optical oscillation branches for each 

s value.  

 

Oscillations of an infinite atomic chain with one atom in the basis 
For exemplification, let us consider first a simple one-dimensional infinite lattice (an “atomic 

chain”) consisting of identical atoms (more precisely, ions) with mass M, separated by the 

lattice constant a, as in the figure below. We expect = 1 (for d = 1 and s = 1), i.e. a single, 

acoustical oscillation branch.  

ds

 

 a 

n – 1        n       n + 1 
 

 

For (thermal) vibrations of the crystalline lattice, in which the ions move slightly around their 

equilibrium positions , their actual positions  satisfy the relations 

, where the displacements can occur either along the chain or transverse 

to the chain of atoms.  

naRn =0
nR

00 || nnnn RuRR <<=−

 It should be noted that one-dimensional lattice vibrations are not encountered only in 

atomic chains. For example, in a simple cubic crystal with one atom in the primitive cell, 

when a wave propagates along the directions of the cube edge, face diagonal, or body 

diagonal, entire planes of atoms move in phase with displacements either parallel or 

perpendicular to the direction of the wavevector (see the figures below).  
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We can describe the displacements of the plane n from its equilibrium position with a single 

coordinate, . The problem becomes in this way one-dimensional. For each wavevector  

there is one solution with longitudinal polarization and two with transverse polarization. The 

parameter A is different for longitudinal and transverse waves. 

nu nu

We have already seen that, in the harmonic approximation, the dynamics of the system 

is equivalent to that of coupled harmonic oscillators, the harmonic potential acting on an ion 

describing a force that is linear in the displacement. For simplicity, we assume further that 

only the interaction between nearest neighbors is significant, case in which the force exerted 

on th n-th atom in the lattice is linear in the ion’s (relative) displacements and hence given by  

 

)()( 11 nnnnn uuAuuAF −+−= −+                                                                                         (22) 

 

where A is the interatomic force (or, equivalently, the elastic constant between nearest-

neighbor ions).  

 Applying Newton’s second law to the motion of the n-th atom with mass M, 

, we obtain nn FdtudM =)/( 22

 

)2()()( 11112

2

−+−+ −−−=−+−= nnnnnnn
n uuuAuuAuuA

dt
udM .                                      (23) 

 

A similar equation should be written for each atom in the lattice. The solutions of the equation 

above have the form 
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)](exp[)](exp[)( 0
0

0 tkaniutkRiutu nn ωω −=−= .                                                             (24) 

 

Such solutions represent traveling waves, in which all the atoms oscillate with the same 

frequency ω and the same amplitude  and have wavevector k. Solutions of this form are 

only possible because of the translational symmetry of the lattice. Note that in (24) there is no 

need for the indices χ, λ or μ because here is only one atom in the basis (χ = 1), we have one 

oscillation (λ = 1) and one dimension (μ = 1). In addition, all atoms oscillate with the same 

amplitude, and no polarization vectors need be introduced (it can be included in ). 

0u

0u

 Inserting (24) into the equation of motion (23) we obtain 

 

)]exp()exp(2[2 ikaikaAM −−−−=− ω                                                                               (25) 

 
or 
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and the dispersion relation, represented in the figure below, is 

 

|)2/sin(|/2)( kaMAk =ω .                                                                                             (27) 

 
 

                              

ω 
2(A/M)1/2 

k 
1st Brillouin zone 

 

Please observe that equation (23) follows also directly, by particularizing (10) for one-

dimensional motion and assuming that only the nearest-neighbor atoms interact with each 
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another, so that 0, =mnA  for 1, ±≠ nnm . In this case, AAA nnnn −== +− 1,1, , , such 

that the sum rule (12) is satisfied. Similarly, equation (25) could have been directly written 

from .            

AA nn 2, =

)]exp()exp([ 1,,1,
2 ikaAAikaAM nnnnnn +− ++−=ω

Because the dispersion relation is periodic: )/2()( akk πωω += , with the periodicity 

given by the reciprocal lattice vector, all distinct frequency values can be found in the k 

interval  

 

aka // ππ <≤− ,                                                                                                                 (28) 
 

which corresponds to the first Brillouin zone. The maximum (cut-off) frequency maxω  

MA /2=  is obtained for the minimum wavelength of aa 2)//(2min == ππλ . The existence 

of a minimum wavelength can be understood as resulting from the condition that waves with 

wavelengths smaller than  cannot propagate in the lattice, being reflected at the boundaries 

of the first Brillouin zone.  

a2

 The significance of the periodicity of the dispersion relation is evident from the figure 

below: changing k by one reciprocal lattice vector gives exactly the same movement of atoms. 

 

 
 

In the long-wavelength limit 12/ <<ka , we have 2/)2/sin( kaka ≅ , and 

 

kvakMAk ac== /)(ω                                                                                                       (29) 

 

so that the oscillations are acoustic and characterized by the acoustic velocity MAavac /= . 
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 Moreover, since the oscillation frequency does not depend linearly with k, we can 

define separately the phase velocity, i.e. the velocity of the phase of the wavefront, and the 

group velocity, i.e. the propagation velocity of the wavepacket and of the wave energy. Their 

modulus are given, respectively, by 
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)2/cos()2/cos( kavkaa
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dv acgr ===
ω .          (31) 

 

In the long-wavelength range, k → 0, acgrph vvv == , 

while at the edges of the first Brilouin zone, for 

ak /π±= , π/2 acph vv =  and . 0=grv

 

Finite lattices 
For finite one-dimensional lattices consisting of N identical atoms, the requirement of 

symmetry (of equivalence of physical properties) when the equation of motion refers to 

different atoms imposes the cyclic boundary condition Nnn uu += . This so-called Born-

Karman condition expresses the independence of the properties on the surface, i.e. we have a 

finite solid, with no surfaces; a finite chain with no end. From the cyclic boundary condition it 

follows that 1)exp( =ikNa , or 

 

m
Na

k π2
= ,                                                    (33) 

 

with m an integer. There are N allowed m values  

for k in the first Brillouin zone: 

 

2/2/ NmN <≤− ,                                     (34) 

 
which correspond to the N degrees of freedom of the system. Because N is usually a large 

number, the discrete nature of the wavenumber is disregarded and it is considered as a 

continuous variable. Below: example for N = 10. 
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ω 

k 

 

 

Density of oscillations in a simple finite one-dimensional lattice 
How many oscillations (with different k values) exist then in the frequency interval 

),( ωωω d+ ? This number is referred to as the density of oscillations per unit frequency and 

is denoted by )(/ ωω DddNosc = . Because for the finite one-dimensional lattice the 

wavenumber varies only in discrete steps of Nak /2π=Δ , there is only one oscillation 

possible in this wavenumber range, so that 

  
D 

ω 
ωmax 

2N/πωmax 

π2
1 Na
kdk

dNosc =
Δ

=                                                       (35) 

 

and, taking into account the double degeneracy due to the  

symmetry of )(kω  (two k values correspond to the same 

ω), we obtain 

 

22
max

2
max

22

12

/1/

1

)2/(sin1/

1
|)2/cos(|/

12)(

ωωπωωππ

πωω
ω

−
=

−
=

−
=

===

N

MA

N

kaMA

N
kaMA

N
d
dk

dk
dN

d
dND oscosc

            (36) 
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Oscillations of an infinite atomic chain with two atoms in the basis 
Let us assume that we have an infinite one-dimensional lattice with lattice constant a, 

consisting of equally spaced ions with different masses  and  (see the figure 

below). The basis has therefore two atoms, placed at equilibrium positions , and 

. In this case d = 1, s = 2, so there should be two oscillation branches, one 

acoustical and one optical. 

1M 12 MM >

naRn =0
1,

anRn )2/1(0
2, +=

 

 

   n-1                                       n                                     n+1                                     n+2     

a 

  n-1      vn-1           un                       vn         un+1              vn+1 n+2 u                        uun-1,1            un-1,2                 un,1                       un,2              un+1,1                 un+1,2              un+2,2 

 
Similarly to the atomic chain with one atom in the basis, when there are two atoms per 

unit cell we have two equations of motion of the general form , one for 

every type of atom. To distinguish between the displacements of the two atoms, we denote 

with 

)/( 22 dtudMF =

)](exp[)( 101, tkanieutun ω−=  the displacement of atoms with mass  (the yellow ones 

in the figure above) and with 

1M

)])2/1((exp[)( 202, tnkaieutun ω−+=  that of atoms with mass 

 (the green ones). (Note that, for simplicity, we omit for now the index λ, which has two 

values: ac and opt, corresponding to the acoustical and optical oscillations.) So, we have 

2M

 

)2()()( 2,12,1,1,2,1,2,12
1,

2

1 −− −−−=−+−= nnnnnnn
n uuuAuuAuuA

dt
ud

M ,                          (37a) 

)2()()( 1,11,2,2,1,12,1,2
2,

2

2 ++ −−−=−+−= nnnnnnn
n uuuAuuAuuA

dt
ud

M ,                         (37b) 

 
or 
 

)2/cos(22)]2/exp()2/[exp(2 21211
2

1 kaAeAeikaikaAeAeeM +−=−++−=− ω ,                     (38a) 

)2/cos(22)]2/exp()2/[exp(2 12122
2

2 kaAeAeikaikaAeAeeM +−=+−+−=− ω .                   (38b) 
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This system of coupled equations has solution only when its determinant vanishes, i.e. when 

 

0
2)2/cos(2

)2/cos(exp22
2

2

2
1 =

−−
−−

ω
ω

MAkaA
kaAMA ,                                                                       (39) 

 

or 
 

0
2

sin
4

2
24

02
0

24 =⎟
⎠
⎞

⎜
⎝
⎛+−

kaγωωωω                                                                                        (40) 

 

with    
21

212
0 2

MM
MMA +

=ω ,  2
21

212

)(
4

MM
MM

+
=γ .  

 
From (40) it follows that there are two solutions (two types of lattice oscillations) for every 

value of k; these are the optical and acoustic branches. The two solutions are 

 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛−−=

2
sin11

2
)( 22

2
02

1
kak γωω ,     

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛−+=

2
sin11

2
)( 22

2
02

2
kak γωω .                    (41) 

 

As for the one-dimensional lattice with one atom in the basis, )()/2( 2,12,1 kak ωπω =+ , so 

that all relevant values are found in the first Brillouin zone.  

 Again, the dispersion relation could have been obtained directly from (14). More 

precisely, when only the nearest neighbors interact we would have obtained 

, 

, so that 

the dispersion relation is recovered if 

)()2/exp()()()2/exp()( 22,1;1,11,;1,22,1;1,1
2

1 keikaAkeAkeikaAkeM nnnnnn +− ++−=ω

)()2/exp()()()2/exp()( 11,1;2,22,;2,11,1;2,2
2

2 keikaAkeAkeikaAkeM nnnnnn +− ++−=ω

== +− 2,1;1,2,1;1, nnnn AA AAA nnnn −== +− 1,1;2,1,1;2,  and 

 (the sum rule (12) is again satisfied!).   AAA nnnn 22,;2,1,;1, ==

From the solutions (41) one can identify the oscillation branches: the acoustic one 

corresponds to the first solution, for which 

 

0)0()0( 1 == ωωac ,     )0(11
2

20
acac a

ωγωπω >−−=⎟
⎠
⎞

⎜
⎝
⎛± ,                                         (42) 
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and the optical branch is consistent with the second solution, for which 
 

02 )0()0( ωωω ==opt ,     )0(11
2

20
optopt a

ωγωπω <−+=⎟
⎠
⎞

⎜
⎝
⎛± .                                    (43) 

 
 

 

t 

-2π/a 2π/a 

 t 
 

 Because for the acoustic branch 0)0( =acω  for k = 0, from the system of coupled 

equations (38) it follows that 1)/( 21 =acee , which implies that the displacement of the two 

types of ions is the same/occurs in the same direction and the unit cell moves as a whole; it 

oscillates in phase (see the figure above, bottom, right). On the other hand, in the long-

wavelength limit of the optical branch, 1221 /)/( MMee opt −= , i.e. the ions are displaced in 

opposite direction and we have out-of-phase oscillations. The oscillations occur such that the 

center of mass of each ion pair is fixed, i.e. 02211 =+ eMeM  (see the figure above, top, 

right). 

 In the long-wavelength limit, when 2/)2/sin( kaka ≅ , the dispersion relation of the 

acoustic branch can be approximated as  

 

kaka
ac γωγωω

422
11

2
0

22
0 ≅

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛−−≅ ,                                                                            (44) 

 
i .e. 
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kvk acac =)(ω ,                      a
MM

Aavac )(24
1

21
0 +

== γω ,                                             (45) 

 

while the dispersion relation for the optical branch becomes 
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⎣

⎡
⎟
⎠
⎞

⎜
⎝
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22

0

22
0

28
1

22
11

2
kaka

opt
γωγωω                                                            (46) 

 
or 
 
 

2
0)( kkopt βωω −= ,                .                                                                   (47) 32/22

0 aγωβ =

 

 Note that, to calculate the density of states for the finite one-dimensional lattice with 

two atoms in the basis, we can follow the same treatment as for the atomic chain with one 

atom in the basis, taking into account that we must calculate separately the density of states 

for the two oscillation types, which have different dispersion relations. 

 

Density of states in a finite three-dimensional crystal 
The density of states/oscillations in a three-dimensional crystal is obtained, as in the one-

dimensional crystal, by imposing the appropriate boundary conditions for . Because there 

is a large number of atoms in a crystal, which interact strongly with their neighbors, the 

contribution of the atoms at the surface of the crystal to any physical phenomena is negligible. 

Therefore, we can employ again the Born-Karman cyclic condition  

χnu

 
μ

χ
μ
χ μ )( Nnn uu +=                                                                                                                       (48) 

 

with , where  is the number of atoms in the  direction, μ 

= 1,2,3, with , , 

)exp( 0
0 tiieuu nn ωχ

μ
λ

μ
χ −⋅= Rk μN μx

xx =1 yx =2 zx =3 . As in the one-dimensional case, the wavevector 

component along the μ direction in the first Brillouin zone has a discrete spectrum, 

 

μ
μμ

μ
π m
aN

k 2
= ,                                                                                                                 (49) 
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with 

 

 
22

μ
μ

μ N
m

N
<≤−                                                                                                              (50) 

 

where  is the lattice constant along , and  are integers, i.e. it varies in steps of μa μx μm

μμ π Lk /2=Δ , with  the length of the crystal along the  direction. The discrete 

k values in a two-dimensional lattice are represented by points in the figure below.  

μμμ aNL = μx

 

 ky 

 

 

 

 kx 
 

allowed k values 
 

 

It follows then that a state/oscillation occupies a volume in the k space given by 

 

V
kkk

3

321
)2( π

=ΔΔΔ=Δk ,                                                                                                    (51) 

 

where Ω== NLLLV 321  is the volume of the crystal with 321 NNsNsN =  atoms that form a 

lattice with a primitive cell of volume 321 aaa=Ω  and s atoms in the basis.  

 The density of states/oscillations in the k space is then defined as 

 

3)2(
1

π
V

d
dNosc =

Δ
=

kk
.                                                                                                           (52) 

 

The density of oscillations in the frequency space, defined as  

 

ωω
ω

d
d

d
dN

d
dND oscosc k

k
==)( ,                                                                                                (53) 
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represents the number of oscillations (with different k values) that exist in the frequency 

interval ),( ωωω d+ . In this formula  is the volume in k space between the surfaces kd )(kω  

and )()( kk ωω d+  (see the figure below). The density of oscillations is discrete (as for one-

dimensional crystals) but, for sufficiently large crystals, the sum over the discrete states can 

be replaced by an integral. We can calculate it observing that 
 
 

  d
 

 
dk⊥ 

 

 dSω 
 

 
 

∫∫
==

⊥ ∇
==

constconst

ddSdkdSd
)()( ||k kk

k
ω

ω
ω

ω ω
ω ,                                                                        (54) 

 

from which it follows that 

 

∫
= ∇

=
const

dSVD
)(

3 ||)2(
)(

k kω

ω

ωπ
ω .                                                                                         (55) 

 

We can express also the density of states as , or kdVdD ])2/([)( 3πωω =

 

∫∫ =
BZst

dVdD
1

3)2(
)( k

π
ωω ,                                                                                                (56) 

 

which represents a particular case of approximating a sum over k in the first Brillouin zone by 

an integral, approximation that for an arbitrary function  is )(kf

 

∫∑∑ →Δ=
BZst

dfVfVf
1

33 )(
)2(

)(
)2(

)( kkkkk
kk ππ

.                                                                (57) 

 

For ))(()( kk ωFf = , we have 
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∫∑ = ωωωω dDFF )()())((
k

k                                                                                                (58) 

 

if the density of states is normalized in each branch χ, χ = 1,…,s such that 

 

NdD 3)(
max

0
=∫

ω

ωω                                                                                                                  (59) 

 

with maxω  the maximum value of the oscillation frequency in the branch.  

Note that for the three-dimensional crystals, we have not defined the density of states 

normalized at unit volume (as for the atomic chain with one atom in the basis), but have kept 

the crystal volume throughout the calculations! 

 
 

Quantized oscillations/phonons in a one-dimensional finite lattice with one 

atom in the basis 
We have seen that in the one-dimensional lattice with one atom in the basis, the ions act as 

coupled harmonic oscillators. Here we show that this system of coupled oscillators can be 

reduced to an equivalent system of independent harmonic oscillators by the introduction of 

normal coordinates. Then, we associate a normal oscillation to each normal coordinate. The 

Hamiltonian of the finite one-dimensional lattice with one atom in the basis can be written as 

 

'
1',

'
1

2

2
1

2 nn

N

nn
nn

N

n

n
ion uuA

M
pH ∑∑

==
+= .                                                                                            (60) 

 

In the quantum treatment of the system of coupled harmonic oscillators, the position and 

momentum coordinates become (conjugate) operators, such that 

 
'''' ˆˆˆˆ]ˆ,ˆ[ nnnnnnnn iuppupu δh=−= ,           0]ˆ,ˆ[ ' =nn uu ,           0]ˆ,ˆ[ ' =nn pp .                          (61) 

We can introduce normal position and momentum operators,  

 

∑ −= −

n
nk iknauNQ )exp(ˆˆ 2/1 ,          ,                                           (62) ∑−=

n
nk iknapNP )exp(ˆˆ 2/1

 
in terms of which the original operators can be expressed as 
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∑−=
k

kn iknaQNu )exp(ˆˆ 2/1 ,          .                                           (63) ∑ −= −

k
kn iknaPNp )exp(ˆˆ 2/1

 

The normal operators satisfy the commutation relations 
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since  
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     (65) 

 

for k,  in the first Brillouin zone, for which 'k Namkk /2' π=−  with m an integer. From the 

commutation relations it follows that the normal position and momentum operators for the 

same wavenumber k are also conjugate. 

 Because there are N normal oscillations and ,  are hermitic operators, , 

, and, for k in the first Brillouin zone (where it takes N discrete values) we have  

normal operators: N normal position operators , and N normal momentum operators .  

nû np̂ kk QQ −
+ = ˆˆ

kk PP −
+ = ˆˆ N2

kQ̂ kP̂

In the normal position and momentum operators, the kinetic energy term in the 

Hamiltonian becomes 
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with k in the first Brillouin zone. In a similar manner,  
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if we take into account that  and )'(])'('exp[ 2

'
' kMannikA

n
nn ω=−∑ )()( kk ωω =− .  

 The Hamiltonian of the system of ions, 
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describes a system of harmonic oscillators that are not, however, totally independent since the 

terms corresponding to k and  are still coupled. To avoid this situation, we introduce 

annihilation and creation operators for each k,  and , and express the normal position 

and momentum operators as 

k−

kâ +
kâ
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The creation and annihilation operators satisfy the commutation relations 
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For k in the first Brillouin zone, the Hamiltonian operator of the lattice is now a sum of N 

independent harmonic oscillators: 
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with ,  the hermitic number operator, for which  and 

, (in the third term of the equation above, we substitute first k for ). 

0]ˆ,ˆ[ ' =kk HH kkk aaN ˆˆˆ += 0]ˆ,ˆ[ ' =kk NN

0]ˆ,ˆ[ =kk HN k−

 For each k mode, the eigenstates (Fock states) and eigenvalues of the Hamiltonian and 

the number operators are 
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where  is the fundamental state of the oscillator, and 〉k0|
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〉−=〉 1||ˆ kkkk nnna ,       〉++=〉+ 1|1|ˆ kkkk nnna ,                        (73) 〉=〉 kkkk nnnN ||ˆ

 

with . The eigenstate of the lattice Hamiltonian is then (there are N discrete values 

for k) 

00|ˆ =〉kka

 
〉⊗⊗〉〉⊗=〉 NN kkkkkk nnnnnn |...||,...,,| 2121                                                                          (74) 

 

and the energy of the collection of harmonic oscillators is 
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where ∑= k kE 2/)(0 ωh  is the zero (fundamental) energy, and ∑= k kph nkE )(ωh  is the 

energy of the quantized oscillations of the lattice in an excited state.  

The state of each k quantum oscillator can be seen as that of  excitation quanta, 

each with an associated energy 

kn

)(kωh . This excitation quanta is associated to a quasi-particle 

named phonon, in analogy with the photon, which is the quanta of the electromagnetic field. 

In the one-dimensional lattice considered here, the phonon is called acoustic phonon since 

there are only acoustic oscillation branches in a one-dimensional lattice with one atom in the 

basis, and the lattice has  phonons at the wavevector ,  phonons at the wavevector 

, and so on. 

1kn 1k 2kn
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Similarly, in a one-dimensional finite lattice with two atoms in the basis and N values 

for k,  
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with , and 〉=〉 0,...,0,0|0|
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where the phonons associated with the 1=λ  branch are the acoustic phonons, and those 

associated with 2=λ  are the optical phonons.  

In a three-dimensional lattice with s atoms in the basis, there are three degrees of 

freedom for every atom, and hence there are 3 acoustic phonons and  optical phonons. 

A typical phonon dispersion spectrum for s = 2 is illustrated below.  

33 −s

 

                        

optic branches 
 
 
acoustic branches 

k 

 
Phonons are quanta of the collective/thermal lattice oscillations. The crystalline lattice 

can be viewed either as a collection of coupled harmonic oscillators or as a gas of free/non-

interacting phonons, which obey the laws of quantum statistics. In particular, phonons are 

bosons and obey the Bose-Einstein statistics. However, since they are not real particles, their 

number is not independent of temperature and volume, so that the electro-chemical potential 

of the phonon gas must be zero. Then, the thermal equilibrium number of phonons with 

frequency )(kλω  is given by the Planck distribution 
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So, the number of phonons is small at low temperatures TkB>>λωh , for which 

]/exp[ Tkn Bph λωh−≅ , but becomes high at large temperatures TkB<<λωh , for which 

λλ ωω hh /]1)/(1/[1 TkTkn BBph =−+≅ . 



Phononic heat capacity 
 

The thermal properties of solids, and in particular the heat capacity, are determined by both 

phonons and electrons. We refer now to the phonon, or lattice, contribution to the heat 

capacity. The heat capacity is defined as the heat QΔ  required to raise the temperature by 

TΔ , i.e. . If the process is carried out at constant volume, TQC ΔΔ= / QΔ  must be replaced 

by , which represents the increase in the internal energy U of the system. Then, the heat 

capacity at constant volume is  

UΔ
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The phonon contribution at the heat capacity is obtained from the lattice energy term  
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of the internal energy , with  the energy in the equilibrium configuration of 

the system. Actually, expressing the internal energy of the system in terms of the free energy 

F and the entropy S as  

EEU eq += eqE

 

TSFU += ,                                                                                                                            (3) 
 

apart from the heat capacity at constant volume VVV TSTTUC )/()/( ∂∂=∂∂=  we can define 

also a heat capacity at constant pressure, PP TSTC )/( ∂∂= . These two parameters are related 

through , and one can be determined from the other. 

These parameters are the same only in the harmonic approximation of lattice oscillations. 

TPVP PVTVTCC )//()/( 2 ∂∂∂∂−=−

In a classical statistical theory, based on the classical partition function, the mean 

energy of a one-dimensional oscillator (resulting equally from its kinetic and potential energy 

parts) is , value that becomes  for a three-dimensional oscillator. Then, for  

three-dimensional oscillators , and the phononic heat capacity at constant 

volume is  

TkB TkB3 sN

TsNkE B3=〉〈



Phononic heat capacity 2

 

B
V

ph sNk
T
EC 3=⎟

⎠
⎞

⎜
⎝
⎛

∂
∂

= ,                                                                                                           (4) 

 

i.e.  per atom, or Bph kC 3= cal/molK633 === RkNC BAph  per mole, with  the 

Avogadro number. This is the Dulong-Petit law, and it predicts a temperature-independent 

heat capacity. This prediction agrees with experimental data at high temperatures, but not at 

low temperatures, where experiments indicate that  as T → 0. 

AN

03 →∝ TC ph

 To explain the low-temperature behavior of the heat capacity, one should disregard the 

classical statistical theory, which is no longer valid when the separation between the energy 

levels of the oscillator is comparable to or higher than , and use instead the quantum 

statistical mechanics. The specific heat of the lattice is then defined as 

TkB
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This expression does not involve the zero energy of the lattice and is called for this reason the 

phononic heat capacity. To specifically calculate the phononic heat capacity we need to know 

the phonon dispersion relation. This relation is quite complicated for three-dimensional 

crystals and therefore approximations are generally made. 

 

The Einstein model 
In this model each atom or molecule is considered as a particle that oscillates in the average 

field of its neighbors. Therefore in the system with  degrees of freedom all particles have 

the same oscillation frequency 

sN3

Eω . The phonon heat capacity is in this case given by 

 

)/(3)( 2 TBsNkTC EBph Θ= ,                                                                                                   (6) 
 

where  is the Einstein temperature, defined by EΘ EBE k Θ=ωh  and 
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is the Einstein function. 
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At high temperatures, for 1/ <<Θ= TEξ , 1)exp(
)11(
)exp()( 2

2

2 ≅=
−+

≅ ξ
ξ

ξξξB , so that 
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as in the Dulong-Petit law, but at low temperatures, for 1>>ξ , where , 

the heat capacity has an exponential temperature dependence of the form 
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Although , the low-temperature dependence of the heat capacity is not 

proportional to 

0)(lim
0

→
→

TC ph
T

3T  (see the figure above, right). The discrepancy is due to the inappropriate 

treatment of the acoustic phonon contribution to the heat capacity. Unlike for optical phonons, 

for which the frequency is almost constant as a function of k, the frequency of acoustic 

phonons has a much wider interval of variation and the oscillations in different lattice cells 

must be considered as correlated (the atoms oscillate in phase!). Therefore, since the Einstein 

model describes in a satisfactory manner the optical phonon contribution to , the heat 

capacity is expressed as 

phC
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where 

 

)/()1(3)( 2 TBNksTC EB
opt
ph Θ−=                                                                                           (11) 

 

and the contribution of the acoustic phonons is estimated from the Debye model. 

 

The Debye model 
In the Debye model the frequency of acoustic phonons in a general, anisotropic crystal is 

written as 

 

kvac ),()( ,, ϕθωω λλλ == kk ,     λ = 1,2,3                                                                              (12) 

 

with θ, ϕ  the polar angles, and their contribution to the heat capacity is given by 
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where  
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is the density of states. The frequency integral in the expression of  is performed between 

0 and 
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phC
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is an angular average of the acoustic velocity (the equality holds as identity in the isotropic 

crystal), then we can introduce also an angle-independent maximum oscillation frequency (the 

Debye frequency) Dωω =max  which, in the Debye model, is also independent on the 

polarization λ. This maximum oscillation frequency follows from the normalization condition 

of the  acoustic oscillation branches: N3
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and so 
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In this case 
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where  defined through DΘ DBD k Θ=ωh  is the Debye temperature, and 
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 is the Debye-Grüneisen integral, which has no analytical solution. The Debye temperature is 

proportional to the acoustic velocity, and so is higher for high Young modulus values and for 

lower crystal densities. It is usually determined by measuring the temperature dependence of 

the resistance around the Debye temperature. 

 At high temperatures, for DT Θ>> , the argument in the  integral is very small, 

since , and after expanding it in series one obtains 

4J

1<<x
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while at low temperatures  the upper limit of the integral can be extended to ∞, so 

that 

DT Θ<<
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 This temperature dependence can be understood from a qualitative argument: at low 

temperatures only the phonon modes with energy TkB<ωh  are excited. These modes are, in 

the k space, inside a sphere (the thermal sphere), so that the number of modes is proportional 

to . If each mode has an average excitation energy of , the total energy of 

excitation is proportional to 

333 Tk ∝∝ ω TkB

4T  and hence the heat capacity is proportional to 3T . 

The total phononic heat capacity, , is now in agreement with 

experiments for both high and low temperatures (see the figure below). 

opt
ph

ac
phph CCC +=
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The Debye temperatures for some elemental crystals are given in the table below 

 

Element ΘD (K) Element  ΘD (K) Element ΘD (K)

Li 344 Be 1440 Cu 343 

Na 158 Mg 400 Ag 225 

K 91 Ca 230 C 2230 

Rb 56 Sr 177 Si 645 

Cs 38 Ba 110 Ge 374 

 



Electron dynamics in the crystalline lattice 
 

We have seen that, in the adiabatic approximation, the equation satisfied by the (sub)system 

of valence electrons with mass m and positions , i = 1,…,  in the field of ions at positions 

, α = 1,…,  is  

ir elN

αR ionN
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where , , and the interaction energy between electrons, 

, is a bi-particle term of Coulomb type. This equation is quite 

difficult to solve and, therefore approximate methods are employed. In one of them, called the 

self-consistent field method (or Hartree-Fock method), the interaction energy between 

electrons 
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1 rr  is replaced by an effective field of the remaining  electrons, 

which can be expressed as a sum of one-particle terms, . More exactly, if 
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iU ),( iii srψ  is 

the one-particle wavefunction for the ith electron, with  the spin value, the antisymmetric 

(with respect to the permutation operator of two electrons) wavefunction of the system of 

electrons can be expressed as a Slater determinant, 

is
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and the energy of the system is given by 
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with 
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the one-particle Hamiltonian. The second term in the right-hand-side of  is the Hartree 

term, while the third term is the Hartree-Fock or exchange term. 

elE

 If the total energy of the electron system could be written as a sum of one-electron 

energies: 
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then the system of interacting electrons would be equivalent to a system of independent 

electrons that satisfy the Schrödinger equation of motion 
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with 
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The effective field  can be determined if the one-electron wavefunctions ef
iU iψ  are known, 

but the latter can only be found if the effective field is given. It is a self-consistent problem, 

which can only be solved iteratively. More precisely, a set of trial functions is first chosen, 

such that , with the help of which the effective potential  is calculated. 

If this effective potential is introduced in the one-electron equation, one obtains 

)0()0(
iiii EH ψψ = )0(ef

iU
)1(

iψ  as a 

solution of , and so on. The iterative process stops after, let’s say p 

steps, when 

)1()1()0( )( iii
ef
ii EUH ψψ =+

)()1( p
i

p
i ψψ ≅− . In conclusion, the motion of one electron in a crystal can be 

described with the one-electron approximation. We use further this approximation and drop 

the subscript i for simplicity. 
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Electrons in a periodic lattice. Bloch functions 
We have seen that an electron in a lattice is described by the Schrödinger equation 
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where the energy potential  describes the interaction with all positive ions and 

the remaining electrons, and   

efion UVV +=
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for any translation vector  of the infinite lattice.  nR

The influence of lattice periodicity on the electron wavefunction can be deduced 

observing that 
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since . This implies that the electron wavefunction after the translation with 

 satisfies the same equation as before, and hence 

∇=∇=∇ + rRr n

nR
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with , because the normalization condition on the volume V imposes that 

. Moreover, at two successive translations we have 

, so that 

1|| =nC

=+∫
V

n drRr 2|)(|ψ 1|)(||| 22 =∫
V

n dC rrψ

mnmn CCC +=

 

)exp( nn iC Rk ⋅= ,                                                                                                                (12) 
 

or )()exp()( rRkRr ψψ nn i ⋅=+ , where k is, for now, a wavevector (more precisely, a quasi-

wavevector). 

 The symmetry properties of the electron wavefunction at translations can be used to 

find the general form of the eigenfunctions of the Schrödinger equation for electrons in a 
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crystalline lattice. More precisely, since =+⋅−= )()exp()( nni RrRkr ψψ ×⋅ )exp( rki  

)}()]({exp[ nni RrRrk ++⋅− ψ , the wavefunctions can be written as 

 

)exp()()( rkrr kk ⋅= iuψ ,                                                                                                      (13) 

 

where )()](exp[)( nniu RrRrkrk ++⋅−= ψ  is a periodic function with the same periodicity 

as the lattice, . Electron wavefunctions of the form given above are called 

Bloch functions. 

)()( nuu Rrr kk +=

 Note that for free electrons, which satisfy the Schrödinger equation with vanishing 

potential energy, and which have wavefunctions )exp()( 2/1 rkrk ⋅= − iVψ , with V the 

normalization volume, all points in space are equivalent (the probability to find the electron at 

a point r, , is independent of r), and the wavefunction is at the same time an 

eigenfunction of the momentum 

V/1|)(| 2=rkψ

∇−= hip̂  with eigenvalues kp h=  (besides being an 

eigenfunction of the Hamiltonian, with eigenvalues ). In contrast, 

for Bloch waves const., and only points that differ through a translation 

vector  are equivalent. Therefore  is the quasi-momentum of the electron in the crystal 

and k is the quasi-wavevector; in the following, we will still refer to k as wavevector, for 

simplicity. 

mmE 2/2/ 222 pkk == h

≠= 22 |)(||)(| rr kk uψ

nR kh

 The influence of lattice periodicity on the electron energy can be inferred observing 

first that the electron energy in a crystal is k-dependent and real (the Hamiltonian is a hermitic 

operator): . The Schrödinger equation can be expressed also as )(kEE =
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since 
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and hence . Because the energy is real, from the (identical) 

Schrödinger equations satisfied by the wavefunction for 

kk krkr uii 22 ))(exp()( +∇⋅=∇ ψ

k−  and its complex conjugate: 
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it follows that the energy is an even function of k: 

 

)()( kk −= EE .                                                                                                                     (18) 

 

In particular, the iso-energetic surfaces of an electron in a lattice, i.e. the surfaces in k space 

for which const., have an inversion symmetry; they are not, however, spheres as for 

free electrons. 

=)(kE

 If in the crystalline lattice we perform a translation of k with a vector in the reciprocal 

space, G, we obtain  

 

)()( Gkk += EE  ,                                                                                                              (19) 

 

because, by replacing k with Gk +  in (11) we obtain )()exp()( rRkRr ψψ nn i ⋅=+  

)(])(exp[ rRGk ψni ⋅+=  since 1)exp( =⋅ ni RG  (the Schrödinger equation and the wave-

function are identical after a translation in the k space). Therefore, the energy is a periodic 

function in the reciprocal lattice space (in k space), and takes distinct values only inside the 

first Brillouin zone (remember that the whole k space can be divided in Brillouin zones with 

all possible orders n, which have the same volume and can be reduced to the first Brillouin 

zone by applying symmetry operations). In the Schrödinger equation for the electron k is a 

parameter. As for phonons, where we have different solutions )(kω  for a given k, associated 

to different oscillation branches, we can have also different eigenfunctions and eigenvalues of 

the electronic Hamiltonian (different energy values ) for a given wavevector k.  )(knE

 

Electron velocity in a crystal 
We have seen that the electrons in a crystalline lattice are Bloch waves. The so-called Bloch 

electrons are quasi-particles since their properties are dependent on the crystalline lattice. If 

an electron with wavevector k is inside a lattice, one can introduce the concept of average 

velocity through the quantum mechanical definition 
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with  the momentum operator. For Bloch electrons the average velocity can be 

expressed as  

∇= )/(ˆ ihp
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which differs from the expression for free electrons, mm // pkv == h , through the second 

term.  

To calculate the average electron velocity, we differentiate (14) with respect to k (we 

apply the gradient in k space), and obtain  
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if the potential energy does not depend explicitly on k. From this result and the normalization 

condition  we can express (21) as  1)()( =∫ rrr k
*
k duu

V
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h 1)()()( ,                                                                                   (23) 

 

so that, finally, 

 

Ekv ∇= −1h .                                                                                                                        (24) 

 

This relation is identical to that obtained for free electrons with a parabolic dispersion 

relation, in which  and, thus,  and . 

Therefore, (24) is a more general expression of average velocity than (21), the difference 

being that in (24) the mass of electrons does not appear explicitly; in a crystalline lattice the 

free electron mass m can be replaced by an effective mass, so that (24) holds, but not (21). 

mE 2/22kh= mE /2kk h=∇ Em kkv ∇== −1/ hh
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Electron acceleration in a crystalline lattice. Effective mass 
Let us now consider that the electrons in the crystal are accelerated by an external force F. 

We separate the effects of the external forces on the electron and the Coulomb interactions 

inside the crystal, by modeling the Bloch electron as a quasi-particle that reacts only to the 

external forces. The influence of the Coulomb interactions on the electron dynamics is 

characterized by an effective electron mass. 

Because, according to the Ehrenfest’s theorem, the classical equations of motion are 

valid for the average values of the quantum observables, we have  
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dE )()( h ,                                                                    (25) 

 

i.e. the quasi-momentum  of an electron in the crystal plays the same role as the 

momentum of a free electron. Here F is only the external force; the internal forces in the 

crystal are taken into account when calculating the dispersion relation , and thus are 

included in the expression of the average velocity. 

kp h=

)(kE

 The acceleration of the electron in the crystal can be defined as 
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or, written on Cartesian components μ,ν = x,y,z, 
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From the relation above it follows that, in general, the acceleration of an electron in the 

crystal has a different direction than that of the applied force. The relation between the 

acceleration and the applied force can be used to introduce, as for the case of free electrons, a 

second-order tensor parameter, called effective mass. Its inverse, defined as 
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is a symmetric tensor, since νμμν )/1()/1( effeff mm = . The inverse of the effective mass can 

take both positive and negative values, unlike for a free electron, where it is a scalar 

parameter and always positive. The effective mass incorporates the effect of the crystal lattice 

on the motion of electrons; it is not a characteristic of the electron (as is its free mass) but of 

the electron-lattice interaction. The effective mass is inversely proportional to the curvature of 

the dispersion relation and is infinite at inflexion points, where the curvature vanishes. 

 If  is an extremum (maximum or minimum) of the energy dispersion relation in the 

k space, for which , a Taylor series expansion of E around  in the harmonic 

approximation (in which only terms up to the second order are considered) can be written as 
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We have denoted . The above form is positively defined if the effective mass 

takes only positive values, and, reducing it to the principal axes we obtain an ellipsoidal iso-

energetic surface that satisfies the equation 

00 )( EE =k
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If two of the semiaxes of the ellipsoid are equal, for example if  the common 

value of the effective mass is called transverse effective mass , and  is the 

longitudinal effective mass; the ellipsoid is in this case an ellipsoid of rotation. If all diagonal 

components of the effective mass tensor are equal, the iso-energetic surfaces become spheres, 

2,1, effeff mm =

tm leff mm =3,

effeffeffeff mmmm === 3,2,1, , and the dispersion relation of the electron in the crystal is similar 

to that of the free electron with mass m, except that m is replaced with the effective mass: 

 

effm
E

2
)(

22kk h
= ,                                                                                                                      (31) 

 
if the reference energy is chosen such that 00 =E . The acceleration has the same direction as 

the external force only along the principal axes of the ellipsoid, or for spherical iso-energetic 

surfaces. 
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Energy bands 
We have seen that the electron energy can take multiple values for a given k in the first 

Brillouin zone. The energy spectrum for the electrons in a crystal can be quantitatively 

determined starting from two models: the approximation of quasi-free electrons (the weak-

binding approximation) or the approximation of quasi-bound electrons (the tight-binding 

approximation). These approximations correspond to two extreme cases. In the first one it is 

assumed that the state of the electron in the crystal can be modeled as a perturbed state of a 

free electron, while in the second approximation, the state of the electron is a perturbed state 

of a bound electron in an isolated atom, the perturbation in both cases being due to the 

periodic lattice potential. The weak-binding approximation is particularly suitable for treating 

the energetic spectrum of valence electrons in metals, while the tight-binding approximation 

is more suitable for semiconductor and isolating materials. In both cases the periodicity of the 

crystalline lattice leads to the formation of allowed and forbidden energy bands. In the figure 

below it is shown how energy bands, separated by gaps, form from atomic s and p orbitals as 

the separation between atoms decreases in Si; a is the lattice constant. 
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The tight-binding approximation 

Let us assume that the wavefunction of the Bloch electron in the crystal, )(rkψ , can be 

expressed as a linear combination of atomic wavefunctions: 

 

)()( nn
n

nC Rrrk −= ∑ ϕψ                                                                                                       (32) 

 

where )( nn Rr −ϕ  is the wavefunction of the atom at position  and  since 

the electron wavefunction must be invariant (up to a phase factor) at translation. The atomic 

wavefunctions satisfy the Schrödinger equation for the isolated atom, 

nR )exp( nn iC Rk ⋅=

 

nannana EU
m

H ϕϕϕ =⎟⎟
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2
2

2

Rrh ,                                                                      (33) 

 

where  is the Hamiltonian and  is the potential energy of an isolated atom and  is 

the corresponding energy, whereas the Schrödinger equation for the electron in the crystal is  

aH aU aE
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h ,                                 (34) 

 

with  the perturbation energy due to the crystal. The fact that 

, and hence 

0)()()( <−−= naUVW Rrrr

)()( naUV Rrr −< 0)( <rW , expresses the stability of the crystal, the potential 

energy in the lattice being lower than in an isolated atom. The electron energies in the crystal 

and in the isolated atom are illustrated in the figure below.  

 

 

Ua(r) 

V(r) 
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The last equation can be re-written as 

 

0])()[exp( =−+⋅∑ n
n

an EWHi ϕkrRk ,                                                                              (35) 

 
or 
 

0])()()[exp( =−+⋅∑
n

nann EEWi ϕϕ krRk ,                                                                        (36) 

 

which becomes, after left-side multiplication with  and integration 

over the crystal volume V, 

)()exp( *
mmmi RrRk −⋅− ϕ

 

0])()()()][(exp[ =−−+−−⋅∑
n

mnamnmn SEEAi RRRRRRk k .                                       (37) 

 

Here 

 

rRrrRrRR dWA nnm
V

mmn )()()()( * −−=− ∫ ϕϕ                                                                    (38) 

 

is the exchange integral, which depends on the overlap of the atomic wavefunctions and the 

crystal perturbation and defines the exchange interaction energy, and  

 

rRrRrRR dS nnm
V

mmn )()()( * −−=− ∫ ϕϕ                                                                            (39) 

 

is the overlap integral, which depends only on the overlapping degree of the atomic 

wavefunctions. If lmn RRR =−  is the translation vector between the nth and mth atoms, it 

follows finally that 
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RkR
RkR

k .                                                                                        (40) 

 

Thus, the energy of the electron in the crystal differs from the energy in an isolated atom 

through a periodic function of k. Instead of a discrete energy level (as in atoms) we have now 

an energy band with a width determined by the maximum and minimum values of the 

perturbation term. 
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 In the simplifying assumption that the atomic wavefunctions are rapidly decreasing 

with the distance, such that the overlap integral is negligible even for neighboring atoms, i.e. 

such that 
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we obtain that 
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la iACEE )exp( Rkk ,                                                                                          (42) 

 

where the sum extends now only over the nearest neighbors, for which  for s 

atomic orbitals, for which A > 0, and 

0)( <−= AA lR

 

0)()()()0( * <−−==− ∫ rRrrRr dWAC nnn
V

n ϕϕ                                                                (43) 

 

is a constant (independent of k) parameter. For a simple cubic lattice with period a, in which 

an atom at the origin of the coordinate system has 6 nearest neighbors at positions [[100]], 

]]001[[ , [[010]], ]]010[[ , [[001]], and ]]100[[ , 
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                                                                                                                                              (44) 

 
)]cos()cos()[cos(2 321 akakakACEE a ++−−=k ,                                                             (45) 

 

which is an even function of the wavevector components; all possible energy values are 

obtained for wavevector components in the first Brillouin zone, i.e. for aka i // ππ ≤≤− . 

The expression above indicates that, in the crystal, the energy level of the isolated atom shifts 

downwards with C due to the interaction between atoms, which renders the crystal more 

stable than an isolated atom, and transforms into an energy band, which is periodic in the 

wavevector components and extends between  and , with minE maxE
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,6min ACEE a −−=    for    ,                                                                                   (46a) 0=ik

,6max ACEE a +−=    for    aki /π±= .                                                                            (46b) 

 

The widths of the energy bands, AE 12=Δ , increase with the exchange integral (with the 

overlap of the atomic orbitals) and are wider for the higher discrete atomic energy levels since 

the wavefunctions of the outer atomic levels are more extended in space. Different energy 

bands form starting from different atomic orbitals, and an additional subscript i label these 

energy bands. In the figure below (left) different energy bands are represented in the first 

Brillouin zone. These bands are formed (in the increasing energy order) from atomic orbitals 

for which A is positive, negative, positive, etc. 

 

         

meff 

  

These (allowed) energy bands are separated by energy gaps (forbidden energy bands) 

with widths . The width of the first energy band, for example, is given by giE

 

)(6)()( 21121,2,1max,2min,1 AACCEEEEE aag +−−−−=−= .                                               (47) 
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If both  and  correspond to s states, the energy gap is determined from the extremities of 

the two bands at different k values (center and edges of the first Brillouin zone), whereas the 

energy gap between bands that form from s and p atomic orbitals is determined by states with 

the same k: at  the edges of the first Brillouin zone, for 

1A 2A

02 <= pAA  (the exchange integral is 

positive) and ,  and at the center of the first Brillouin zone if  and 01 >= sAA 02 >A 01 <A . 

 

Effective mass in electronic energy bands 
Let us calculate the effective electron mass at the extreme points of the energy band with the 

dispersion relation )]cos()cos()[cos(2 321 akakakACEE a ++−−=k . Near the center of the 

first Brillouin zone, when  and , 1<<aki 2/)(1)cos( 2akak ii −≅
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2 )(6 kAaEkkkAaACEE a +=+++−−=k ,                                                     (48) 

 

and hence the energy depends quadratically on the wavevector, , as 

for free electrons, with an effective mass  

effmkEE 2/22
min h+=k

 
22122 2/)( AaEmeff hh =∇= −

kk .                                                                                          (49) 

 

The effective mass is positive for energy bands that form from s atomic orbitals, for which    

A > 0. For the particular case considered here, that of a simple cubic lattice, the iso-energetic 

surfaces = const. in the neighborhood of the center of the first Brillouin zone are spheres. 

Note that  depends on the dispersion relation, and hence on the crystal structure. 

kE

effm

 On the contrary, at the edges of the first Brillouin zone, introducing the new variables 

)/(' ii kak −±= π , such that )'cos()'cos()cos( akakak iii −=+= πm , the dispersion relation 

can be expressed as  

 

)]'cos()'cos()'[cos(2 321' akakakACEE a +++−=k                                                         (50) 

 

and, for  and , 1' <<aki 2/)'(1)'cos( 2akak ii −≅
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The dispersion relation is again similar to that of a free electron, i.e. has the form 

, with an effective mass effmkEE 2/'22
max' h+=k

 
22122 2/)( AaEmeff hh −=∇= −

kk ,                                                                                        (52) 

 

which is negative if A > 0. An example of such a situation is represented in the figure above 

(right). Note that the effective mass is negative at the center of the first Brillouin zone and 

positive at its edges for energy bands that form from p atomic orbitals, for which A < 0. In 

general, > 0 in the neighborhood of the minimum energy value in the band and < 0 

near the maximum energy value in the band. 

effm effm

Although (51) shows that the iso-energetic surfaces are also spherical at the edges of 

the first Brillouin zone, they have complicated forms at intermediate energy values, between 

the center and the edges of the first Brillouin zone. Due to the periodicity of electron energy 

in the k space, the iso-energetic surfaces are the same in all cells in the reciprocal space, so 

that the iso-energetic surfaces are multiple connected. The same general results are obtained 

in the weak-binding approximation.  

 

Electrons and holes 
If the electron in the crystal, with an electric charge e−  and a positive (isotropic) effective 

mass   is placed in an electric field E, its acceleration 0>effm

 

effeff memdtd /// EFva −===                                                                                          (53) 

 

is similar in form to that of a free electron. On the other hand, in the neighborhood of the 

maximum energy value in the band 0<effm  and the electron equation of motion is given by 

 

|)|/(|)|/(/ effeff memdtd −−=−== EFva .                                                                       (54) 

 

The negative effective mass in the equation above has no analog for free particles. It has, as 

consequence, that an electric field will decelerate the electron, instead of accelerating it. To 

avoid such an awkward interpretation, it is considered that the motion of the electron with a 

negative effective mass in the electric field E is equivalent with the motion of a quasi-particle 
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with electric charge  and a positive effective mass, equal to . This quasi-particle is 

called hole. The hole is a quasi-particle since, unlike the electron, it has no physical meaning 

in free space; holes exist only in crystals and reflect the behavior of valence electrons. In a 

generalized sense, even the electron in the crystal can be seen as a quasi-particle endowed 

with an effective mass, which is different from that of the free electron. 

e+ || effm

If the electrons in the upper part of an occupied energy band (the valence band) 

acquire sufficient energy from thermal vibrations, for example, to go into an unoccupied state 

in the next energy band, called conduction band, the remaining empty states can be 

considered as holes. Since the empty states can be occupied by other electrons, the holes can 

be seen as moving throughout the valence band, i.e. they can be regarded as free quasi-

particles in the valence band. In other words, an energy band occupied with electrons with the 

exception of its upper part, can be seen as partially occupied with holes. Because the electrons 

that participate at electrical and thermal conduction are those able to move (quasi-)free in the 

crystal, the concept of holes allows a major simplification in the treatment of the system of 

electrons in the valence band: it is no longer necessary to deal with the motion of the entire 

system of electrons, but only with the motion of a much smaller number of holes. 

In general, the holes in the valence band have not only an opposite electric charge, but 

also a different effective mass than the electrons in the conduction band, since their dispersion 

relation is different (the valence and conduction bands originate from different isolated atomic 

levels). The holes move in the direction of the applied electric field, whereas electrons move 

in the opposite direction!. 

 

Density of electron states 
Real crystals have finite sizes and, therefore, the solution of the Schrödinger equation for the 

electrons in the crystal depends on the boundary conditions. As for phonons, we assume that 

in large crystals the surface phenomena do not influence significantly the electron dynamics 

inside the crystal, and hence use the cyclic (Born-Karman) boundary conditions. In the 

orthorhombic symmetry, for example, if the dimensions of the crystal along the orthogonal 

Cartesian coordinates , i = 1,2,3 (ix xx =1 , yx =2 , zx =3 ) are denoted by , the cyclic 

conditions impose that 

iL
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or, since )exp()()( rkrr kk ⋅= iuψ  with  the same in all lattice cells, )(rku

 

iii mLk π2= ,                 iii Lmk /2π=                                                                                  (56) 

 

with  integer numbers. Similarly, in a finite crystal with  atoms along the i direction, 

such that , with  the respective lattice constants, it follows that 

im iN

iii aNL = ia

 

ii

i
i aN

mk π2
= ,                                                                                                                           (57) 

 

where, for wavevectors in the first Brillouin zone, the integers  can take only  values in 

the intervals 

im iN

 

2/2/ iii NmN <≤− .                                                                                                          (58) 

 

Thus, for a simple lattice (with one atom in the basis), the number of distinct energy states of 

electrons in an allowed energy band is 321 NNNN = , and these states can be occupied by  

electrons because, according to the Pauli principle for fermions, only two electrons with 

opposite spins can occupy an energy state characterized by a given k. In large crystals the 

distance between energy levels is quite small and the energy band is approximated as a 

(quasi-)continuous function of k, case in which any sum over states in the k space can be 

replaced (as in the case of phonons) by an integral over the first Brillouin zone. More 

precisely, for any function , 

N2
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where  
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3
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is the volume in k space occupied by a distinct electron state. 
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 In particular, the density of states in the k space, defined as the number of electron 

states with a given spin orientation, , in the volume element , is given by eldN kd
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or 
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The density of states per unit volume, defined as the number of states per unit volume with a 

given spin orientation in the energy interval  is then dE
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where  is the volume in k space between the iso-energetic surfaces  and EV )(kE dEE +)(k . 

As for phonons, |)|/( EdEdSdSdkd kk ∇== ⊥  with  the infinitesimal element on the 

 = const. surface and  normal to this surface, and the expression above simplifies to  

dS

)(kE ⊥dk
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which becomes 
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for spherical iso-energetic surfaces, for which . In this case 

 and , with 

effmkEE 2/)( 22
0 h+=k

effmkE /|| 2h=∇ k kdkdS Ω= 2
kdΩ  the element of solid angle. 
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Classification of solid state materials 
One of the most important achievements of the energy band theory is the possibility to 

classify solid state materials in metals, isolators, and semiconductors. This classification is not 

based on the structure of the energy bands, which is quite the same in all materials, but on the 

degree of occupation of these bands. The available number of energy states is occupied by 

electrons in agreement with the Pauli exclusion principle. More precisely, at low temperatures 

(in principle, at T = 0 K) the states are occupied in the order of increasing energy value, such 

that only two electrons (with opposite spins) are allowed on an energy state E with a given k 

value. The available states are occupied by electrons up to an energy level called Fermi 

energy, or Fermi level . Because electrons are fermions, their quantum statistical 

distribution function at temperature T is described by the Fermi-Dirac formula 

FE

 

]/)exp[(1
1)(

TkEE
Ef

BF−+
=                                                                                         (65) 

 

with  the Boltzmann constant. The temperature dependence of the Fermi-Dirac distribution 

function is illustrated in the figure below. At T = 0 K, the distribution is a step function, equal 

to 1 for energies smaller than the Fermi energy, and equal to 0 otherwise. 

Bk

 

                       
 

Two situations can exist: 

1) at low temperatures, T ≅ 0 K, the Fermi level is inside an energy band (see the figure 

below, left), i.e. electrons occupy partially the last energy band. The material is then a 

metal and can easily conduct electricity since the electrons in the vicinity of FE , 

accelerated by a small applied electric field, can occupy available empty states with 

higher energy. 



Electron dynamics 20

                           
 

2) at low temperatures, T ≅ 0 K, the electrons occupy completely a number of energy bands, 

so that the Fermi level is inside the energy gap between the last occupied band, called 

valence band, and the following empty band, called conduction band (see the figure 

above, right). In this case a small electric field does not provide sufficient energy for the 

electron to jump into empty states in the higher energy band, and therefore no electric 

current can flow through the material. We deal in this situation with a dielectric.  

At higher temperatures, T ≠ 0 K, the dielectric materials, in turn, can be either isolators 

or semiconductors, depending on the width of the energy gap between the valence and 

conduction bands. If < 3 eV, thermal fluctuations can excite electrons from the valence to 

the conduction band, where they can contribute to electrical conduction, and the material is in 

this case a semiconductor. As a result, in (undoped) semiconductors the number of electrons 

in the conduction band is equal to the number of holes in the valence band. When an applied 

electric field is applied, the current has two contributions: one from electrons and the other 

from holes, which are drifted in opposite directions. In isolators, > 3 eV and no electrical 

conduction exists at moderate temperatures or electric fields. 

gE

gE

Because the total number of electrons in a crystal with N unit cells and s atoms in the 

basis, each atom having Z electrons, is , and an energy band can accommodate  

electrons, it follows that the number of occupied energy bands is . Then, in 

simple lattices with s = 1, there is always a partially occupied band for odd Z values and these 

materials should be metals. This is the case of monovalent alkaline metals (Li, Na, K, Cs, Rb) 

and noble metals (Cu, Au, Ag), which have only one valence electron. However, it is not true 

that materials with s = 1 and even Z are always dielectrics. For example, bivalent elements 

such as Be, Mg, Ca, Sr, B, are metals. The explanation is that, in these cases, the completely 

NsZ N2

2/2/ sZNNsZ =
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empty conduction band overlaps the completely occupied valence band over a small energy 

interval (see the figure below). The electrical conductivity is poorer, though, if the overlap is 

slight. Note that in genuine dielectric materials, at T = 0 K there is no overlap between the 

conduction and valence bands.  

 

 
 

 Because at the top of partially occupied energy bands the charge carriers are holes, a 

mixed conduction (electrons and holes) is expected when the conduction and valence bands 

overlap over a narrow energy range. The materials that have a mixed conduction at T = 0 K 

are called semimetals; they differ from metals in that in metals the conduction is always due 

to electrons only. The semimetals have more complicated band structures than metals and 

dielectrics. Examples of semimetals are As, Sb, Bi; these materials have an electrical 

conductivity with up to four orders of magnitude smaller than in metals. 

In metals, the iso-energetic surface in the reciprocal space defined at T = 0 K through  

 
FEE =)(k                                                                                                                             (66) 

 

is called Fermi surface. The Fermi surface separates the states with a low occupation density 

from those with a high occupation density and determines the physical properties of metals, 

especially the electrical properties, in which only electrons within an energy interval of the 

order of  around the Fermi energy participate. Examples of simple and complex Fermi 

surfaces are given in the figures below. Note that in Ni, which has strong magnetic properties, 

the Fermi surfaces for electrons with opposite spins are different. 

TkB
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Statistics of charge carriers 
 

The statistic properties of charge carriers are determined when these are in 

statistical/thermodynamical equilibrium with the crystalline lattice. To find these properties 

we need to know the distribution function and the density of states of electrons and holes.  

 For a general system of electrons characterized by a distribution function (probability 

of occupying available electronic states) , the concentration of electrons is )(Ef
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where the factor 2 originates from the sum over the spin states with index σ. The density of 

electronic states for spherical iso-energetic surfaces is given by 
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Because there are differences in the distribution function of charge carriers in metals and 

semiconductors, in the following we treat these cases separately. 

 

Statistics of electrons in metals 
In metals the Fermi energy is inside an energy band and one can define the Fermi surface. The 

density of electrons in metals with spherical iso-energetic surfaces is given by (2) with 

 and, at a finite temperature T, the electrons occupy the energy states according to the 

Fermi-Dirac distribution function 

00 =E
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In this case, the electron concentration becomes 
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if the upper limit of the integral is approximated with ∞. This approximation is justified since 

the integrand decreases rapidly. With the change of variables TkEx B/= , , we 

finally obtain 
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where 
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are the Fermi-Dirac integrals. They are evaluated numerically. Note that the same result is 

obtained for an arbitrary . In this case, in (4)  appears in the numerator of the integrand 

and in the lower limit of the integral, but disappears in the final result (equations (5) and (6)), 

if the new variables are chosen as 

0E 0E

xTkEE B =− /)( 0 , yTkEE BF =− /)( 0 .  

The temperature dependence of the Fermi-Dirac distribution function is represented in 

the figure below. At all temperatures, 2/1)( =FEf  . 

 

 
 

 At T = 0 K, where the Fermi-Dirac distribution is a Heaviside function, i.e. 
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the concentration of electrons in metals is 
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with  the Fermi energy level at T = 0 K, or 0
FE
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where  is the Fermi wavenumber. From (9) it follows that the Fermi energy at 

T = 0 increases as the electron concentration increases, the system of electrons being in the 

fundamental state if the Fermi sphere is completely occupied and in an excited state if 

electrons occupy states with . 

3/12 )3( nkF π=

Fk>|| k

 For finite but low temperatures, 1/ >>= TkEy BF , and spherical iso-energetic 

surfaces, the Fermi-Dirac integrals can be approximated with 
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and so 

 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+=

22
2/3

32

2/3

8
1

3
)2(

F

B
F

eff

E
TkE

m
n π

π h
.                                                                                  (11) 

 

On the other hand, the electron concentration in metals does not depend on temperature 

because an increase in T affects only the thermal excitation of electrons on higher energy 

levels. It follows thus that the Fermi level must depend on temperature and, from 
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we obtain 
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This temperature dependence is very weak and the Fermi energy is, in the first approximation, 

almost constant as T varies. 

 

Statistics of charge carriers in semiconductors 
In semiconductors the Fermi level is situated between the valence and the conduction band, 

which are separated by an energy gap. At T = 0 K, all energy states below  are occupied 

with electrons according to the Pauli principle, i.e. according to the Fermi-Dirac distribution 

function, and all states above the Fermi level are empty. Because the holes in semiconductors 

can be viewed as states not occupied by electrons, the probability that a state k, with energy 

 is occupied by a hole (i.e. is empty for electrons) is 

FE

)(kE
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 If  the Fermi-Dirac distribution function has almost the step-function 

form characteristic for T = 0 K. In this case the distribution function is called degenerate and 

is encountered in materials with large concentrations of electrons, such as metals and heavily 

doped semiconductors. On the contrary, when 

1/ >>TkE BF

1/ −<<TkE BF  or , the 

exponential term in the Fermi-Dirac distribution function is much larger than unity and the 

distribution function resembles the classical Maxwell-Boltzmann distribution, 

1/ >>− TkE BF
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which can be seen as the “tail” of the Fermi-Dirac distribution. This case corresponds to low 

electron concentrations, in particular to undoped (intrinsic) semiconductors, in which the 

electron concentration is with few orders of magnitude smaller than in metals. The Maxwell-

Boltzmann distribution function is called nondegenerate.  

 

Intrinsic semiconductors 
The density of states for electrons in an intrinsic semiconductor is similar to that in metals (for 

an arbitrary ) and is found to be 0E
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for spherical iso-energetic surfaces , where  is the minimum energy 

in the conduction band, and  is the effective mass of electrons in the vicinity of this 

minimum energy. In an analogous manner, the density of states for the holes with effective 

mass  in the valence band is found to be 

nc mkEE 2/)( 22h+=k cE
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where  is the maximum energy in the valence band. This expression was found taking into 

account that the hole energy increases in the opposite direction as that of the electron. Both 

electron and hole density of states must be multiplied with 2 if the spin degeneracy is 

included. 

vE

 However, the dispersion relation is not always spherical. For example, the conduction 

band of Ge and Si are ellipsoidal iso-energetic surfaces with  equivalent minima arranged 

symmetrically in the first Brillouin zone ( = 4 for Ge and = 6 for Si). This case can be 

reduced to that of spherical iso-energetic surfaces if, in the neighborhood of these minima 

situated at , the dispersion relation 
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is transformed into a spherical dispersion relation 
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by a change of variables '/'0 nniiii mmkkk =− . The figures below illustrate the iso-

energetic surfaces in Si (left) and Ge (right). There are 4 complete ellipsoids (8 half-

ellipsoids) in the first Brillouin zone in Ge. 

 
 

                
 

 
Then, in the calculation of the density of states we must account for the fact that 

, from which it follows that the density of 

states becomes 

']'/)[( 2/32/1
321321 kk dmmmmdkdkdkd nnnn==

 

2/1
2/3

2/1
321

32

2/3

)(
'

)(
4

)'2()( c
n

nnnn
n EE

m
mmmmED −=

hπ
.                                                                   (20) 

 

Because there are  equivalent minima/ellipsoids, the density of states is given by eqN
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where the effective mass of the density of states in the conduction band is defined as 
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Concentration of charge carriers and Fermi energy 

In an intrinsic (undoped) semiconductor, the requirement of electrical neutrality imposes the 

same concentration for both electrons and holes, 

 

pn = .                                                                                                                                   (23) 

 
 In intrinsic semiconductors the concentrations of charge carriers are small (n and p are 

smaller with several orders of magnitude than the electron concentration in metals), so that 

the available energy states are no longer occupied according to the Fermi-Dirac distribution 

function, as in metals, but according to the classical Maxwell-Boltzmann distribution. So, the 

electron an hole concentrations in intrinsic semiconductors with spherical iso-energetic 

surfaces are given by 
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with , TkEEy BcFc /)( −= TkEEy BFvv /)( −= . The expressions are similar to that found in 

metals, with TkEEx Bcc /)( −= , TkEEx Bvv /)( −= , respectively, except that in this case 

the Fermi-Dirac integrals become 
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since we use the Maxwell-Boltzmann distribution. Because )exp()2/()(2/1 yyF π= , 
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are the effective densities of states in the conduction and valence bands, respectively. From 

the relations above it follows that, unlike the degenerate case in metals, the concentrations of 

electrons and holes in non-degenerate semiconductors depend strongly on temperature.  

 The Fermi energy is determined from the neutrality condition, i.e. from 

  E 
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The result is 
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and, at T = 0 K, the Fermi level is at the middle of the energy gap: 2/)( vcF EEE += . As the 

temperature increases, the Fermi level shifts towards the energy band with the smaller 

effective mass (see the figure above); it remains at the centre of the energy gap, irrespective  

of temperature, only if . A special situation is encountered in semiconductors with a 

small energy gap width  and  or 

pn mm =

vcg EEE −= 1/ >>np mm 1/ <<np mm  (the first situation is 

much more common). In this case, the Fermi level can enter inside the band with the smaller 

effective mass, and the semiconductor becomes degenerate at even moderate temperatures. 

An example of such a material is InSb, for which = 0.18 eV and . gE 10/ ≅np mm

 It should be emphasized that, starting from the expression of the electron 

concentration in semiconductors, it follows that the conditions of applicability of the 

Maxwell-Boltzmann statistics is 
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If the energy reference is chosen such that 0=cE , 1)/exp( <<TkE BF  for small electron 

concentrations, high temperature, and high effective masses. On the contrary, if these 

conditions are not satisfied and , i.e. if the electron concentration is high, 

the temperature is low, and the effective mass is small, the electron gas is degenerate, and the 

criterion above is known as the degeneracy criterion. Electrons in metals satisfy the 

degeneracy criterion. 

1)/exp( >>TkE BF
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 The intrinsic concentration of carriers can be defined as 
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This concentration does not depend on the Fermi level, and its temperature dependence is 

summarized in the formula (see figure) 
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and the band gap can be determined from the slope of the figure 

at the right side. For a large class of semiconductors, the energy 

gap width depends on temperature as: TETE gg α−= 0)( .  

 

1/T 

ln(ni/T 3/2) 

 

Extrinsic semiconductors 
An extrinsic semiconductor is a doped semiconductor, i.e. it contains donor and/or acceptor 

impurities In donor impurities, the number of valence electrons is higher than in the host 

material, and the extra electrons are not involved in binding with the atoms of the host 

material; they are still localized around the donor impurity but can easily participate at the 

process of charge carrier transport when an electric field is applied. The number of free 

electrons that contribute to electrical conduction increases in the presence of donor impurities. 

On the contrary, acceptor impurities have a smaller number of valence electrons than the host 

material, and their stable binding with host atoms requires an additional electron from the host 

material. As a result, the number of holes increases when acceptor impurities are present.  

 

           

+ 
B 
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For Si (see the schematic figures above), which forms covalent bonds with other four atoms, 

P is a donor impurity since it has five valence electrons, and B is an acceptor impurity 

because it has only three valence electrons. Donor and/or acceptor impurities are purposefully 

introduced into a host semiconductor to increase its electrical conduction. On the other hand, 

the unintentional doping of a crystal introduces defects into the crystalline lattice and 

degrades its electrical performances. Therefore, doping is a process that should be carefully 

controlled. The donor and acceptor impurities have discrete energy levels inside the bandgap 

of the host material, which can be occupied by electrons and, respectively, holes. The charge 

carriers on the impurity levels are localized around donors and acceptors and are not free to 

move around the host crystal unless the impurities are ionized, i.e. the electrons on donor 

energy levels are promoted (by thermal energy or applied electric fields) into the conduction 

band and the holes on acceptor levels are excited into the valence band of the host material.  

Let us denote by  and  the concentration of donor and acceptor impurities, by 

 and  the concentrations of electrons and holes localized on the donors and acceptors, 

respectively, i.e. the concentrations of neutral donors and acceptors, and by  

and  the concentrations of the ionized impurities. The ionization of donors and 

acceptors leads to an increase of the number of free charge carriers with respect to the 

intrinsic semiconductor case. If n and p are the total concentrations of free electrons and 

holes, the condition of charge neutrality is  

dN aN
0
dN 0

aN
0
ddd NNN −=+

0
aaa NNN −=−

 
+− +=+ da NpNn ,                                                                                                               (34a) 

 
or 
 

00
adda NNpNNn ++=++ .                                                                                             (34b) 

 

Unlike in the case of free charge carriers, the distribution function of the electrons localized 

on donor impurities and that of the holes localized on acceptor impurities is not the Fermi-

Dirac function, which is valid when two electrons with opposite spins can occupy an energy 

level, according to the Pauli principle. The reason is that only a single electron can occupy an 

energy level on an impurity atom. If another electron is brought on this level, its energy varies 

significantly due to the strong electrostatic interaction between electrons.  
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According to the Fermi-Dirac distribution function, the ratio between the probability 

that the state is occupied and the probability that the state is empty is,  
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On the contrary, since only one electron can exist on an impurity level, the same ratio is now 
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for electrons on donors (the level is occupied twice as fast), or 
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for holes on acceptor impurities. In general, the factor  in front of the exponential term 

in the denominator should be replaced by , with g the degeneracy of the energy level.  

)2/1(

)/1( g

 Taking into account that the density of states of the discrete donor/acceptor energy 

levels  are  iE
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the concentrations of the electrons localized on the donors and of holes localized on acceptors 

are given by 
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and the neutrality condition becomes 
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from which one can determine the position of the Fermi energy level. The Fermi level in 

extrinsic semiconductors is different than in intrinsic semiconductors! 

 

Extrinsic semiconductors with only one impurity type 

Let us consider that the semiconductor is nondegenerate and has only donor impurities with 

concentration  . In this case ++= ddd NNN 0 0=aN , , and (34b) can be expressed as 00 =aN

 

dd NpNn +=+ 0 ,                                                                                                                 (43) 

 

with n and p determined as above, with the help of the Maxwell-Boltzmann statistics. The 

electrons in the conduction band are generated either through the ionization of donor 

impurities (through the transition from the donor level to an energy level in the conduction 

band), process that requires the energy dcgd EEE −=  (equal to the ionization energy of the 

donor impurity), or through the ionization of the atoms in the crystal (the transition of an 

electron from the valence in the conduction band), process that requires an energy equal to 

.  Because , the contribution of the two processes differs as a function of the 

temperature. More precisely, at low temperatures the dominant process is the ionization of 

impurities, whereas at high temperatures the electron transitions between the valence and 

conduction bands prevail. We have extrinsic conduction at low temperatures, and intrinsic 

conduction at high temperatures. 

gE ggd EE <<
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I) Extrinsic conduction regime  

At low temperatures, at which the conduction electrons originate from the ionization of donor 

impurities, for a given donor concentration  the neutrality condition becomes 

, or 

pNd >>

dd NNn =+ 0
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This is a second order equation for , which can be easily solved by introducing 

the variables , 

)/exp( TkE BF

]/)exp[( TkEEx BdF −= ]/)exp[()/( TkEENNy Bdccd −= . In terms of these 

variables (44) can be written as , from which it follows that 02 2 =−+ yxx
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For extremely low temperatures, for which 1]/)exp[()/(8 >>− TkEENN Bdccd , (45) 

can be approximated as ]/)exp[()2/(ln TkEENNTkEE BdccdBdF −+= , or 
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which reduces to 
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at T = 0 K. The temperature dependence of the Fermi level can be determined taking into 

account that . At temperatures of only few K, when 

,  shifts towards the conduction band but, as the temperatures increases until 

, the Fermi level takes again the value at T = 0 K. Thus, in this temperature interval 

 reaches a maximum value at a temperature  
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determined from the condition 0/ =dTdEF , or 2/3)2/ln( =cd NN . In (48) e is not the 

electric charge, but the basis of the natural logarithm!  

The maximum value of the Fermi energy is found to be 
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The Fermi level can even reach the minimum value of the conduction band, i.e. cF EE =max,  

for a critical concentration impurity 
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At this critical concentration the semiconductor becomes degenerate. The temperature 

dependence of the Fermi level is represented in the figure below, left. 
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A further increase in temperature, which corresponds to , leads to a 

decrease in the Fermi level value towards , until this value is reached for a so-called 

saturation temperature . The temperature interval 

dc NN >2

dE

sT sTT <<0  is called the weak ionization 

region (see region 1 in the figure above). In this temperature interval, from (46) it follows that 
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i.e. , and, since , the temperature dependence of the electron concentration 

is . The ionization energy of the donor impurities, , can thus be 

determined from the slope of the  plot (see the figure above, right). 
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 At still higher temperatures, for which 1]/)exp[()/(8 <<− TkEENN Bdccd , (45) can 

be approximated as ]}/)exp[()/ln{( TkEENNTkEE BdccdBdF −+= , or 
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the logarithm being negative since . Thus, the Fermi energy decreases as the 

temperature increases and becomes lower than , level reached at the saturation temperature 
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In this temperature interval the electron concentration is given by (see (52)) 
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result that shows that the donor impurities are totally ionized, and the electron concentration 

is independent of temperature for . The regime is an exhausting regime for donor 

impurities and in the figure above is indicated as region 2. 

sTT >

 

II) Intrinsic conduction regime 

For high-enough temperatures the hole concentration starts to increase and becomes 

comparable with the electron concentration. In particular, if  the neutrality condition 

(43) can be written as . In this regime of high temperatures the donors are 

completely ionized, the charge carriers originating from the ionization of the host semicon-

0
dNp >>

dNpn +=
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ductor material. For a nondegenerate semiconductor , which introduced in the 

neutrality condition leads to 

nnp i /2=

 

022 =−− id nnNn ,                                                                                                                (55) 

 

the solution of this equation being 
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Because at high temperatures the host material is the main source of charge carriers, the 

expressions for electron and hole concentrations in intrinsic semiconductors apply, and the 

Fermi energy level, determined from ]/)exp[( TkEENn BcFc −= , with n from (56), is  
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The expression above can be studied in two extreme situations: 

1) , case in which  1/4 22 <<di Nn

 

dNn = , ,                                                                                                            (58) di Nnp /2=

 

and (in agreement with our previous results for the totally ionized/exhausted impurities) 
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2) , case in which  1/4 22 >>di Nn
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and (as for the intrinsic semiconductor) 
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 The temperature dependence of the Fermi level in this region of intrinsic conduction is 

indicated in the figure above (see region 3). At high-enough temperatures the increase of the 

electron concentration in the conduction band originates from electron transitions from the 

valence band. The transition temperature from the exhausting regime of impurities to the 

region of intrinsic conduction can be determined from (58) and (60), i.e. from , and is 

found to be 

di Nn =
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Summarizing, the temperature dependence of the electron concentration shows three 

distinct regions (see the figures below). The logarithmic dependence of the concentration on 

the inverse of the temperature can be approximated with a straight line in regions 1 and 3 (see 

figure below, left) if we neglect the influence of the factors 2/3T  and 4/3T , respectively, in 

comparison with the exponentials terms, and the parameters  and  can be determined 

from the corresponding slopes. On the contrary, in region 2 the electron concentration is 

approximately constant, since the donor impurities are exhausted. 
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Electronic specific heat 
 

Electronic specific heat in metals 
In metals, the electronic specific heat per unit volume, calculated at constant volume, is 

defined as 
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dEC el
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where the energy per unit volume of the system of non-interacting electrons is given by 
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with  (see the course on electron statistics in metals). In the 

normalized coordinates , 

322/12/3 4/)2()( hπEmED eff=

xTkE B =/ yTkE BF =/  and for spherical iso-energetic surfaces the 

energy per unit volume becomes 
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where  
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are the Fermi-Dirac integrals. The last equality in (3) follows because (see the course on the 

statistics of electrons in metals) 
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So, taking into account that 
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)(/)( 1 yFdyydF −= αα α ,                                                                                                          (6) 

 

the electronic heat capacity can be expressed as 
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At low temperatures, from ⎟⎟
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and so 
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where the Fermi temperature is a parameter defined as  and  is 

the classical electronic specific heat.  is obtained using the same general expression (7) as 

above, but with the Fermi-Dirac distribution function replaced by the Maxwell-Boltzmann 

distribution, case in which  

BFF kET /0= B
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2/3)(/)( 2/12/3 =yFyF ,                                                                                                     (10b) 

BFF kTEdTdE 2/3// −= ,                                                                                               (10c) 

2/3/ −=dTTdy .                                                                                                               (10d) 
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The equality (10c) follows from (5) and the requirement that 0/ =dTdn , considering that in 

the nondegenerate case )()/()/)(/(/)( yFdTdydTdydydFdTydF ααα == . Then, (10d) is 

obtained from (10c) and (8b), so that, finally, . B
cl
el nkC )2/3(=

 The ratio  can be seen as the fraction of excited electrons at temperature T, the 

other electrons being “frozen” due to the Pauli principle. The value of this ratio at room 

temperature is typically 10−2. 

FTT /

 The linear relation between the electronic specific heat in metals and temperature is 

generally expressed as 

 

TCel γ= ,                                                                                                                               (11) 
 

where  is known as the Sommerfeld constant. Although this constant has 

been derived using the approximation of spherical iso-energetic surfaces, its value remains the 

same for general surfaces. 

022 2/ FB Enkπγ =

 Taking into account also the phononic contribution to the specific heat (see the lecture 

on phononic heat capacity), at low temperatures the specific heat is given by (see the figure 

below) 

 
3aTTCCC phelV +=+= γ ,                                                                                                 (12) 

 

 
 
where  
 

3

4

5
12

D

B
ion

kna
Θ

=
π                                                                                                                 (13) 



Electronic specific heat 4

with  the ion concentration. The electronic term dominates at very low temperatures, for 

which , i.e. for 

ionn
2aT>γ
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In particular, the Debye temperature can be determined from the slope of the curve 

 at very low temperatures, while γ is determined from the value of 

this dependence at T = 0. The values of γ for several metals are given in the table below.  

)(/ 22 TfaTTCV =+= γ

 

Metal γ ·10−4 (J/mol·K2) Metal γ ·10−4 (J/mol·K2) Metal γ ·10−4 (J/mol·K2)

Li 17 Ag 6.6 Zn 6.5 

Na 17 Au 7.3 Al 13.5 

K 20 Be 2.2 Fe 49.8 

Cu 6.9 Mg 13.5 Co 47.3 

Ca 27.3 Ba 27 Ni 70.2 

 

 

Carrier specific heat in intrinsic semiconductors 
In a nondegenerate intrinsic semiconductor with spherical iso-energetic surfaces, the energies 

of the system of electrons and holes are given by, respectively (see (3) and (10b)) 
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The total energy of charge carriers is however equal to 
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since the free electrons in the conduction band have an additional potential energy of . 

Because in an intrinsic semiconductor 

gnE

inpn == , with  the intrinsic carrier concentration, 

(16) can be written as 

in
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)3( gBicarr ETknE += ,                                                                                                        (17) 

 

and the carrier specific heat is 
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when the weak temperature dependence of the bandgap is neglected. Because 
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it follows that 
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and 
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This expression is valid if , since otherwise the degeneracy of the system of 

electrons and holes must be taken into account. From (21) it follows that at low temperatures 

the contribution of charge carriers to the specific heat in an intrinsic semiconductor can be 

neglected, due to the exponential temperature dependence of . 

TkE Bg ≥

in

In an extrinsic semiconductor the specific heat of charge carriers can be calculated in a 

similar manner. More precisely, in (16) one must introduce the correct concentrations of free 

carriers in all conduction regimes, and must account for their specific distribution function 

and temperature dependence. The carrier specific heat of free electrons and holes is found, 

then, to depend on both the concentration of donor and acceptor ions and of their energy 

levels. At low temperatures this contribution to the specific heat is, again, negligible. 
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Boltzmann kinetic equation 
When an electric or a magnetic field is applied on a crystal, the displacement of charge 

carriers induces transport (or kinetic) phenomena. The distribution function of charge carriers 

with energy  in equilibrium is described by the Fermi-Dirac function  kk EE =)(
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On the other hand, in the presence of external fields, the system of charge carriers is no longer 

in equilibrium and the corresponding distribution function  depends, in general, on 

spatial coordinates and time.  

),,( tf rk

In a semiclassical treatment, the number of particles that follow a certain trajectory is 

conserved in the absence of scattering processes, so that . However, 

scattering/collision processes of electrons on phonons, impurities or defects in the crystalline 

lattice are unavoidable, so that the total derivative of the distribution function does not vanish 

any more, but is equal to the variation of the distribution function due to collisions. More 

precisely, 
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where v is the electron velocity in the crystal and dtddtd // kpF h==  is the external force. 

In a stationary state, when the distribution function is independent of time, , and, if 

we consider the effect of the Lorentz force 

0/ =∂∂ tf

)( BvEF ×+−= e  only, we obtain the kinetic 

Boltzmann equation 
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To find the distribution function  from this equation it is necessary to know the 

collision term in the right-hand-side. This is a difficult problem, which can be simplified by 

introducing the relaxation time 

),,( tf rk

)(kτ , which describes the return to equilibrium of the 

distribution function when the external fields are switched off: 
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The relaxation time is thus the interval after which the change in the equilibrium distribution 

function decreases e times after the external fields are turned off. The introduction of the 

relaxation time parameter is possible when the collision processes are elastic, i.e. when the 

energy of charge carriers is not modified at scattering, and act independently (there is no 

interference of electron states). Moreover, the inequality TkB/h>>τ  must be satisfied, where 

cBTk τ=/h  is the collision time. This inequality expresses the fact that the collision time can 

be neglected, i.e. the collisions are instantaneous. In addition, the external fields must not 

modify the energy spectrum of electrons in the crystal; this condition prohibits intense 

magnetic fields, for example, which lead to the quantization of electron energy levels.  

The quantum nature of electrons is apparent only in the collision term, through the 

electron quantum states that satisfy the Pauli principle. A detailed balance between the 

number of electrons in the state characterized by the wavevector k and those in the state  

leads to the collision term  
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where  is the electron transition probability per unit time from state k into the state 

. In the equilibrium state 

)',( kkP
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We consider distribution functions that can be approximated as perturbations of , 

i.e. that can be expressed as 
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where  an, as yet, unknown vectorial function (it has specific forms for different 

scattering processes). Under these conditions we can express the collision term as 
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if only the linear terms in  are retained and the identity 1f
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is employed. Then, 
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or ∑ −=
k'

kkk )/'1)(',()(/1 χχτ kkP  for elastic collisions, when 'kk EE = . Here ,  are 

the projections of k,  on the vector χ.  The calculation of the relaxation time can be 

performed for different scattering mechanisms, the temperature dependence of this parameter 

being generally expressed as 

χ'k χk
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where  is an energy-independent coefficient, and r is characteristic for each collision 

type:  for collisions with acoustic phonons in metals, 

)(TA

2/3=r 2/1−=r  for the same mecha-

nism in semiconductors,  for scattering on optical phonons in polar semiconductors at 

high temperatures,  for scattering on neutral impurities in metals, and  for colli-

sions with ionized impurities in semiconductors. If several scattering mechanisms coexist, 
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Electrical conductivity 
The electrical conductivity in a crystal is characterized by the tensor σ̂  that appears in the 

definition of the density of electric current: 

 

Ej σ̂= ,                                                                                                                                (15) 

 

or on components μ, ν = x, y, z 
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In an isotropic solid the electrical conductivity is a scalar parameter and Ej σ= . On the other 

hand, for , the density of electric current per crystal volume can be 

expressed as 
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since the equilibrium density function  does not bring any contribution if the sum 

above is performed over all positive and negative k values ( , and hence , is an even 

function of k, whereas  is an odd function of k). The perturbation term of the 

equilibrium distribution function, , is determined from the kinetic Boltzmann equation. 

)(0 kEf

kE )(0 kEf

Ekv ∇= −1h

)(1 kf



Kinetics of charge carriers in solids 5

More precisely, if only an electric field of intensity E is applied and there is no temperature 

gradient in the sample, i.e. if , the kinetic Boltzmann equation can be written as 0=∇ fr
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The second term can be neglected at small electric fields, when only linear effects in E are 

considered, case in which the electrical conductivity is independent of the electric field, and 

the equation above can be solved to obtain 
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From (15), (17) and (19) it follows that the tensor of the electrical conductivity can be 

expressed as 
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In isotropic crystals, for an electric field along the x direction, the conductivity is scalar: 
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For spherical iso-energetic surfaces, , effmkE 2/22h=k effmkv 2/μμ h= , and in spherical 

coordinates with θ the polar angle and ϕ the azimuthal angle, ϕθ cossinkkx = , 

ϕθ sinsinkk y = , θcoskkz = , , and ϕθθ dddkkd sin2=k
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Taking into account that  and that the relaxation time depends 

on energy, such that its statistical average can be defined as 

52/32/34 /)2( hdEEmmdkk effeff=
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the electrical conductivity becomes 
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where we have used the fact that for metals the electron concentration can be written as 
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Similar relations are obtained along the principal axes for a crystal with elliptical iso-

energetic surfaces. 

 Alternatively, the density of electric current can be expressed as 
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where the mobility μ of charge carriers/electrons is introduced through Ev μ−= . The minus 

sign indicates that the motion of electrons is opposite to the direction of the applied electric 

field E. The relation between the electric conductivity and the mobility is thus 
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In anisotropic crystals the mobility, as the electric conductivity, is a tensor. 


