
A Fundamentals of Density Functional Theory

A.1 The Kohn-Sham formulation of Density Functional

Theory

The raison d’etre of Density Functional Theory (DFT) is the solution of the
many-body Hamiltonian for a system of N electrons and M positively-charged
nuclei (or ions) in a crystalline solid, the starting point for nearly all prob-
lems in solid-state physics. Neglecting all relativistic and magnetic effects, this
Hamiltonian can be written as:
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where the electrons are denoted by lower case subscripts and the nuclei, with
charge ZI and mass MI , by upper case subscripts. The terms in this Hamil-
tonian represent, from left to right, the kinetic energy of the electrons, the
attractive potential acting on the electrons due to the nuclei, the repulsive
electron-electron interaction, the kinetic energy of the nuclei and finally the
repulsive internuclear electrostatic interaction. In practice, such an elementary
equation as Eq. 23 is impossible to solve analytically for all but the most triv-
ial systems because of the enormously complicating effects of the interactions
between electrons, which leads to coupling between the electronic coordinates
in the system. This coupling manifests itself under the well-known phenomena
of inter-electron exchange and correlation interactions in Quantum Mechanics .
The issue central to the theory of electronic structure is therefore the develop-
ment of approximate methods using simplifying physical ideas to treat electronic
interactions and correlations with sufficient accuracy such that, starting from
Eq. 23, one can still gain insight into the diverse array of electronic properties
and phenomena exhibited by real solid matter.

One initial simple approximation involves setting the mass of the ionsMI to
infinity, which is tantamount to saying that the positions of the ions are assumed
fixed to their corresponding lattice points within the crystal structure. This so-
called Born-Oppenheimer, or Adiabatic, approximation in electronic structure
calculations allows the ionic kinetic energy term in Eq, 23 to be ignored, which
is an excellent approximation for most intent and purposes. Neglecting also
the final inter-ionic electrostatic interaction term, which is essential in total
energy calculations but reduces to a simple classical additive term within the
Born-Oppenheimer approximation, the initial problem of solving the electronic
structure for the entire crystalline solid is consequently simplified to the treat-
ment of the crystal electron cloud exclusively. The corresponding N -electron
Schroedinger equation can be rewritten as:
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where Vion(ri) = −
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represents the combined ionic potential acting

on each electron, EN is the total electronic energy and ΨN (r1, σ1; r2, σ2; ....rN , σN )
is the N -electron wavefunction expressed in terms of the spatial (ri) and spin
(σi) quantum numbers for the ith electron in the material.

Historically, an important milestone for going beyond the independent-electron
approximation, embodied by the Sommerfeld free-electron model, and incorpo-
rating approximately the effect of inter-electron interactions in solids was the
development of the Hartree-Fock equations 8. Even though they were the first
technique which allowed for a neat separation between electron exchange and
correlation effects, in practice their treatment remains difficult and requires care-
ful further approximations. The need for more accurate, widely-applicable and
easy-to-implement methods for calculating the ground state properties of many-
body molecules and solid-state systems from first-principles, or “ab-initio”,
while still accounting for the effects of inter-electron exchange and correlation
interactions, provided an incentive for P. Hohenberg and W. Kohn to conceive
the current modern formulation of DFT in 1964 [47]. In this pioneering work,
the authors demonstrated that the density n(r) of particles in the ground state
of a quantum many-body system can be assigned a special role and considered
as a “fundamental” variable, and that all properties of the system under investi-
gation, including the effects of interactions and correlations among the particles,
can be considered to be unique functionals 9 of this fundamental quantity. It
follows from this crucial conjecture that the ground state electron density can be
used as an effective replacement for the ground state many-body wavefunction
ΨG (r1, σ1; r2, σ2; ....rN , σN ) appearing in Eq. 24, thus significantly simplifying
the scale and complexity of the problem from the full 3N degrees of freedom
for N electrons embodied by ΨG. This change of variables can be expressed
conceptually as follows:
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This reformulation of the many-body problem is encapsulated by two cardi-

nal theorems, known as Hohenberg-Kohn (HK) theorems, which together estab-
lish the theoretical foundations of all modern formulations of DFT. Apart from
encompassing the important role assigned to the ground state density in DFT
mentioned previously, the HK theorems also provide insight in the relation be-
tween the ground state density of a system of mutually-interacting electrons and
any general external potential Vext (r) acting upon it (for example, the Coulomb
potential due to the nuclei in the periodic crystal structure of a material). The
HK theorems, which will be stated here without proof 10, can be expressed as
follows:

1. Theorem 1: For any system of interacting particles bathed in an external
potential Vext (r), the potential Vext (r) is determined uniquely, except for

8For an introduction to the mathematical formalism of Hartree-Fock theory, see for example
page 332 in Ref. [5].

9Familiarity with the mathematical concept of Functional is assumed in this report. For
an introduction to the theory of Funcionals and their applications in Calculus of Variations,
the reader is referred to Chapt. 22 in Ref [98].

10For a formal proof of the HK theorems, consult for example section 6.2 in Ref. [71].
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in turn the functional for the kinetic energy in Eq. 26 to be kept expressed
in terms of the single-particle orbitals, without therefore the need to find an
explicit dependence on the density:
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Given that all other functionals of the density in Eq. 26 can now also be
expressed in terms of the independent-particle orbitals ψσi (r) via Eq. 28, the
problem of minimizing Eq. 26 to find the ground-state energy of the system can
be reformulated in terms of variations of the orbitals via the chain rule, which
yields the following variational equation:
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subject to the orthonomalization constraint on each of the single-particle or-
bitals: 〈
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Using expressions 29 and 28 for calculating the derivatives involving the Kinetic
Energy and the density:

δTS

δψσ∗i (r)
= −

1

2
∇2ψσi (r);

δnσ(r)

δψσ∗i (r)
= ψσi (r) (32)

and the Lagrange multiplier method for constrained minimization 11, we obtain
the following set of Schroedinger-like equations, one for each of the N single-
particle orbitals in the auxiliary system:

(HσKS − εσi )ψ
σ
i (r) = 0

{ψσi : i = 1, N}
(33)

where the Lagrange parameters ǫi represent the possible eigenvalues. It is im-
portant to stress that these eigenvalues do not correspond to the single-particle
energies as in a normal Schroedinger Equation, and in fact have no obvious
physical meaning except for the highest one, which corresponds to the ioniza-
tion energy of the system. HKS on the other hand represents the effective KS
Hamiltonian:
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Equations 33 and 34, collectively referred to as the Kohn-Sham equations, rep-
resent the culminating point of the entire KS formulation of DFT. By diag-
onalizing and solving the equations self-consistently (in practice by numerical
means) one can first compute all the single-particle KS eigenstates ψσi (r), and
from there the ground-state density and total ground-state energy of the original

11An introduction to this mathematical technique is provided in section 5.9 in Ref. [98]
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interacting system from Equations 28 and 26 respectively, with an accuracy lim-
ited only by the approximations in the exchange-correlation functional (given
that all other functionals in Eq. 26 can be computed exactly within the KS
approach) . In fact, the development and availability today of highly accurate
exchange-correlation functionals with a broad range of applications has been the
determining factor for elevating DFT to its current position as the most accu-
rate, computationally-efficient and widely used technique for ab-initio electronic
structure calculations in a wide range of atoms, molecules and condensed matter
systems. The next section in this document is devoted to the description of the
approximations for this functional most entrenched in the Condensed-Matter
Physics community.

A.2 The Local Density and Generalized Gradient approx-

imations for the exchange-correlation energy func-

tional

Already in their seminal paper [63], Kohn and Sham pointed out that solids
can often be considered as close to the limit of the homogeneous electron gas.
In this limit, it is known that the effects of exchange and correlation are rather
local in character, and they proposed making the local density approximation
(LDA) (or more generally the local spin density approximation (LSDA), which
accounts also for the spins of the electrons in a spin-polarized system) in which
the exchange-correlation energy is simply an integral over all space, with the
exchange-correlation energy density ǫXC([n], r) at each point r assumed to be
the same as in a homogeneous electron gas of interacting electrons with the
same local density:

ELDAXC [n] =
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∫
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[
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The corresponding exchange-correlation potential appearing in the KS equations
is consequently given by:
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The only information needed within the LDA approximation is therefore the
exchange-correlation energy of the homogeneous gas as a function of density.
Since the exchange energy of an homogeneous electron gas can be calculated
analytically within Hartree-Fock theory, and is given by 12:

εhomX = −
3

4

e2kF

π
= −

3e2

4πao
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where kF is the Fermi wavevector and ao the Bohr Radius, the LDA simply
boils down to fitting numerical correlation energies for the homogeneous gas,
for example by Monte Carlo total energy calculations [91, 14]. A variety of
LDA expressions for the correlation energy have been proposed with time, and
the most celebrated are summarized in Appendix B of Ref. [71]. The LDA

12A derivation of this expression can be found in Chapt. 17 of Ref. [5].
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is expected to give the best results for solids close to a homogeneous electron
gas in which the charge density is slowly varying (like a nearly-free-electron
metal) and worst for very inhomogeneous cases, like for the case of atoms where
the density must go continuously to zero outside the atom, or indeed in any
general covalently-bound solid. However, experience has proved the LDA to be
a surprisingly good approximation for a wide variety of solid-state systems.

The remarkable success of the LDA in most applications has stimulated ideas
for the development of various Generalized Gradient Approximations (GGAs)
[87, 88, 90], with marked improvement over LDA in many cases. The first step
beyond the local approximation was the introduction of a functional of the mag-
nitude of the density gradient |∇nσ(r)| in addition to the value of n(r) at each
point r, which lead to the so-called Gradient Expansion Approximation (GEA).
However, the GEA was found to often yield worse results than the LDA due to
the large density gradients found in real materials, which cause the expansion
to break down. The GGA provided the solution by introducing functions that
modify the behavior at large gradients in such a way as to preserve the desired
properties of the material under investigation. Within the the context of the
GGA, it is convenient to generalize the expression for the Exchange-correlation
functional given by Eq. 35 to include explicitly the dependence on the various
orders of the density gradient |∇mnσ(r)|:
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where FXC is a dimensionless function, known as the enhancement factor of
the exchange-correlation functional, and ǫhomx (n) is the exchange energy den-
sity of the homogeneous electron gas given by Eq. 37. An expression for the
exchange-correlation potential appearing in the KS equations can also be found
by calculating the change δEXC [n] to linear order in δn and δ∇n = ∇δn:
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It is natural to work in terms of dimensionless reduced density gradients of
mth order that can be defined by:

sm =
|∇mn|

(2kF )
m
n

(40)

With this notation, the lowest order terms in the expansion of the exchange
part FX and correlation part FC of FXC have been calculated analytically:

FX = 1 +
10

81
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146

2025
s22 + ...... (41)

and

FC =
εLDAC (n)

εLDAX (n)

(
1− 0.219s21 + .....
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(42)

where FC is expressed as a correction to the corresponding LDA expressions
for the exchange and correlation energy densities. One of the defining char-
acteristics of GGAs is that they lead to an exchange energy lower than their
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LDA counterparts, since Fx � 1. The resulting reduction of the cohesive en-
ergy improves markedly the agreement with experiment for atoms, molecules
and solids, and therefore constitutes a significant step forward over the LDA
overbinding [54, 23]. Numerous different forms have been proposed for the
higher-order terms in the expansions for FC and FX by choosing different phys-
ical conditions for s → ∞, leading to very different behaviors in the region of
large density gradients. Hence, even if one form of GGA somehow gives the cor-
rect result for a certain physical property while others fail, the same form is not
necessarily superior for other properties in which different physical conditions
prevail.

A.3 Computational self-consistent solution of the Kohn-

Sham equations: the plane-wave pseudopotential method

In order to solve in practice the eigenvalue problem presented by the KS equa-
tions (33), the single-particle eigenstates ψσi (r) must be expanded in some or-
thogonal basis set. The simplest and most popular choice for this basis is to use
orthogonal plane-wave functions, under the so-called orthogonalized planewave
(OPW) method [101, 46, 65] . These plane-waves can be expressed as 13:

ψik(r) =
∑

G

cnk(G)e
i(k+G)·r (43)

where k is the crystal momentum and the sum is over all Bravais lattice vectors
G of the reciprocal lattice of the system under investigation. This discrete basis
set can in theory be made infinite in size by application of periodic boundary
conditions to the problem, but in practice a finite number of plane-wave basis
states is normally sufficient to converge systematically most physical quantities
of interest in typical computational problems. As explained in Fig. 30, in order
to truncate the basis set, the sum term in Eq. (43) is limited to a set of reciprocal
lattice vectors encompassed by a sphere with radius defined by the cutoff kinetic
energy, Ecut:

�
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∣∣k2 +G

2
∣∣

2m
� Ecut (44)

so that the entire set of plane-waves can be defined by this maximum kinetic
energy component. More recently, the OPW method has been reformulated and
adapted to modern techniques for calculation of total energy, forces and stress
under the so-callled Projector-Augmented Wave (PAW) method [9], which in-
troduces projectors and auxiliary localized functions for a more efficient solution
of the KS eigenvalue problem.

The choice of plane waves as basis set however requires to be operated in
conjunction with the implementation of pseudopotentials [19, 93, 20] in order
to limit the size of this expansion to computationally-feasible proportions for
the solution of realistic systems. Pseudopotentials allow for a neat separation
between the treatment of core electrons in an atom, that is those electrons
which are tightly-bound to the nucleus and are therefore not involved in the
interactions between atoms, and the valence electrons, which on the other hand
are more loosely bound and consequently dictate the chemical properties of the

13This form for the plane-wave functions can be shown to be the most general solution
satisfying Bloch’s Theorem for periodic boundary conditions in a crystal lattice.
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tioning is the techniques used for determining the charge density and other
quantities which can be extracted from DFT calculations such as total energy
and atomic forces. The evaluation of all these quantities require summations
to be performed over the occupied states, which for crystals translate into inte-
grals over the Brillouin zone. Exploiting the symmetry properties of the crys-
tal, this integration can then be limited to the symmetry-irreducible wedge of
the zone (IBZ). In practice, these integrals are calculated numerically using
wavefunctions and eigenvalues at a finite number of k-points in the electronic
bandstructure of the IBZ. This leads to the so-called special points method for
Brillouin-zone integration [16, 27, 6], the most commonly used approach for
this type of calculations, in which integrations are performed as weighted sums
over a grid of representative, or special, k-points chosen to yield optimum con-
vergence for smoothly varying functions of k. This application of the special
points method however proves problematic for the case of metals, where elec-
tronic bands intersect the Fermi energy Ef . This leads to discontinuities in the
electronic occupation numbers and therefore in the integrands at the Fermi sur-
face, thus yielding slower convergence for a given number of k-points. This dif-
ficulty can be overcome by the introduction of an artificial temperature-induced
and convergence-accelerating broadening of the Fermi surface corresponding to
a smoother electron distribution function than the original step function, such
as a finite-temperature Fermi distribution. Care must however be taken to en-
sure that the introduction of such broadening factor does not affect physical
quantities of interest.

Once equipped with all the above-mentioned computational models and tech-
niques, a solution to the set of KS equations minimizing the total energy func-
tional of Eq. (26) can be found numerically according to the iterative scheme
portrayed in Fig. 32. Any valid solution must be self-consistent, meaning that it
must be subject to the constraint that the effective KS potential V σKS(r) and the
resulting electron density n(r, σ) be consistent with one another, as highlighted
in the figure. In practice this is done by successively looping over changes in
V σKS(r) and n(r, σ) until the self-consistent agreement is reached.
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B Phonons from Density Functional Perturba-

tion Theory

The starting point in all formulations of Density Functional Perturbation Theory
(DFPT), for expanding the DFT method outlined in the previous appendix to
systems perturbed away from their equilibrium configurations, is the expansion
of the Kohn-Sham (KS) single-particle orbitals, densities and self-consistent
potentials in perturbation series of the general form:

X(λ) = X(0) + λX(1) + λ2X(2) + λ3X(3) + .... (45)

where X(λ) is the quantity of interest and λ is the perturbing parameter. For
the case where the quantity of interest is the total energy of the system and
where the perturbations consist in atomic displacements away from equilibrium
positions, we see that Eq. (45) reduces to a similar expression as the orig-
inal quadratic form for the expansion of the harmonic potential energy (Eq.
(16)), in which E(0) is the total ground-state energy, the E(1) are the atomic
forces, the E(2) are the sums of force constants which determine the phonon
dispersion curve, and the E(3) represent the cubic anharmonic terms which can
be neglected within the harmonic approximation together with all higher-order
terms. The theoretical cornerstone underlying DFPT is the so-called 2n + 1
theorem, which asserts that variations of the energy up to order 2n + 1 in a
perturbation expansion are determined using only variations in KS orbitals up
to order n. Consequently, the atomic forces (the terms of first order in the
perturbation expansion of the energy) can be determined directly from the un-
perturbed (n = 0) KS orbitals. This special case of the 2n+1 theorem for forces
is also known as the Hellmann-Feynman theorem, and can be proven indepen-
dently from elementary quantum mechanical perturbation theory. Although the
existence of this theorem is not relevant within the context of the linear-response
method, it makes DFT codes useful in any computational task relying on the
evaluation of atomic forces in crystals, such as the small-displacement method
described previously.

As already mentioned, in the context of phonon calculations the main term
of interest is E(2), and this can be determined together with the first anharmonic
term E(3) from the linear response of the KS orbitals, ψ(1). ψ(1) is given in turn
by the solution of the first-order Sternheimer equation:

(
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i
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ψ
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i = −
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H(1) − ε

(1)
i

)
ψ
(0)
i (46)

where i labels the ith solution to the set of KS equations, and ε
(0)
i and ε

(1)
i

represent respectively the unperturbed and first order perturbed KS energy
eigenvalues for the ith solution to the KS equations. An expression for the

first-order variation in the energy eigenvalues ε
(1)
i can be found by imposing the

following orthogonalization constraint on the KS orbitals:

〈
ψ
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Furthermore, H(0) in Eq. (46) represents the unperturbed KS Hamiltonian
and H(1) its first-order perturbed variation. In addition to the external per-

turbing potential V
(1)
ext (r) induced by the phonon displacement wave traveling

through the crystal, H(1) includes also the contributions that V
(1)
ext (r) makes to

the Hartree and Exchange-Correlation potentials due to the perturbations it
induces in the electronic charge density of the crystal n(r):

H(1)(r) = V
(1)
ext (r) +

∫
d3r′

n(1)(r′)

|r− r′|
+

∫
d3r′

δVXC

δn(r′)
n(1)(r′) (49)

where n(1)(r) is the first-order variation in the charge density, given in terms of
the KS orbitals as:

n(1)(r) =
N∑

i=1

[〈
ψ
(1)
i (r)

∣∣∣ ψ(0)
i (r)

〉
+
〈
ψ
(0)
i (r)

∣∣∣ ψ(1)
i (r)

〉]
(50)

Moreover, it has been assumed in Eq. (49) that the kinetic energy term in the
KS hamiltonian remains unaffected by the external perturbation.

Given the above expressions for H(1) and ε
(1)
i , the Sternheimer equation of

Eq. (46) can be reduced to a simple linear problem in the plane-wave basis set
used for expanding the KS orbitals. Since H(1) depends on n(1)(r) , any solution
has to be self-consistent in the same sense as explained previously in Section
A.3 for the case of the unperturbed ground state KS equations. In particular,
the first step in the solution of the linear response problem involves solving

self-consistently the unperturbed KS equations to obtain n(0)(r), ψ
(0)
i and ε

(0)
i .

Then, keeping these fixed, Eq. (46) and Eq. (50) are solved iteratively for the

first order perturbations in, respectively, the KS orbitals ψ
(1)
i and the charge

density n(1)(r), until a self-consistent solution is found.
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