A Fundamentals of Density Functional Theory

A.1 The Kohn-Sham formulation of Density Functional
Theory

The raison d’etre of Density Functional Theory (DFT) is the solution of the
many-body Hamiltonian for a system of N electrons and M positively-charged
nuclei (or ions) in a crystalline solid, the starting point for nearly all prob-
lems in solid-state physics. Neglecting all relativistic and magnetic effects, this
Hamiltonian can be written as:
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where the electrons are denoted by lower case subscripts and the nuclei, with
charge Z; and mass My, by upper case subscripts. The terms in this Hamil-
tonian represent, from left to right, the kinetic energy of the electrons, the
attractive potential acting on the electrons due to the nuclei, the repulsive
electron-electron interaction, the kinetic energy of the nuclei and finally the
repulsive internuclear electrostatic interaction. In practice, such an elementary
equation as Eq. 23 is impossible to solve analytically for all but the most triv-
ial systems because of the enormously complicating effects of the interactions
between electrons, which leads to coupling between the electronic coordinates
in the system. This coupling manifests itself under the well-known phenomena
of inter-electron exchange and correlation interactions in Quantum Mechanics .
The issue central to the theory of electronic structure is therefore the develop-
ment of approximate methods using simplifying physical ideas to treat electronic
interactions and correlations with sufficient accuracy such that, starting from
Eq. 23, one can still gain insight into the diverse array of electronic properties
and phenomena exhibited by real solid matter.

One initial simple approximation involves setting the mass of the ions M7 to
infinity, which is tantamount to saying that the positions of the ions are assumed
fixed to their corresponding lattice points within the crystal structure. This so-
called Born-Oppenheimer, or Adiabatic, approximation in electronic structure
calculations allows the ionic kinetic energy term in Eq, 23 to be ignored, which
is an excellent approximation for most intent and purposes. Neglecting also
the final inter-ionic electrostatic interaction term, which is essential in total
energy calculations but reduces to a simple classical additive term within the
Born-Oppenheimer approximation, the initial problem of solving the electronic
structure for the entire crystalline solid is consequently simplified to the treat-
ment of the crystal electron cloud exclusively. The corresponding N-electron
Schroedinger equation can be rewritten as:
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where Vion(ri) = — m represents the combined ionic potential acting
I=1

on each electron, Ey is the total electronic energy and ¥ y (r1,01;72,02; ... N, ON)
is the N-electron wavefunction expressed in terms of the spatial (r;) and spin
(0;) quantum numbers for the it electron in the material.

Historically, an important milestone for going beyond the independent-electron
approximation, embodied by the Sommerfeld free-electron model, and incorpo-
rating approximately the effect of inter-electron interactions in solids was the
development of the Hartree-Fock equations ®. Even though they were the first
technique which allowed for a neat separation between electron exchange and
correlation effects, in practice their treatment remains difficult and requires care-
ful further approximations. The need for more accurate, widely-applicable and
easy-to-implement methods for calculating the ground state properties of many-
body molecules and solid-state systems from first-principles, or “ab-initio”,
while still accounting for the effects of inter-electron exchange and correlation
interactions, provided an incentive for P. Hohenberg and W. Kohn to conceive
the current modern formulation of DFT in 1964 [47]. In this pioneering work,
the authors demonstrated that the density n(r) of particles in the ground state
of a quantum many-body system can be assigned a special role and considered
as a “fundamental” variable, and that all properties of the system under investi-
gation, including the effects of interactions and correlations among the particles,
can be considered to be unique functionals ° of this fundamental quantity. It
follows from this crucial conjecture that the ground state electron density can be
used as an effective replacement for the ground state many-body wavefunction
Ve (r1,01;72,02; ....7n, oy ) appearing in Eq. 24, thus significantly simplifying
the scale and complexity of the problem from the full 3N degrees of freedom
for N electrons embodied by W¢. This change of variables can be expressed
conceptually as follows:
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This reformulation of the many-body problem is encapsulated by two cardi-
nal theorems, known as Hohenberg-Kohn (HK) theorems, which together estab-
lish the theoretical foundations of all modern formulations of DFT. Apart from
encompassing the important role assigned to the ground state density in DFT
mentioned previously, the HK theorems also provide insight in the relation be-
tween the ground state density of a system of mutually-interacting electrons and
any general external potential V., (r) acting upon it (for example, the Coulomb
potential due to the nuclei in the periodic crystal structure of a material). The
HK theorems, which will be stated here without proof °, can be expressed as
follows:

1. Theorem 1: For any system of interacting particles bathed in an external
potential V¢ (r), the potential V. (r) is determined uniquely, except for

8For an introduction to the mathematical formalism of Hartree-Fock theory, see for example
page 332 in Ref. [5].

9Familiarity with the mathematical concept of Functional is assumed in this report. For
an introduction to the theory of Funcionals and their applications in Calculus of Variations,
the reader is referred to Chapt. 22 in Ref [98].

0For a formal proof of the HK theorems, consult for example section 6.2 in Ref. [71].
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Figure 28: Flow diagram illustrating the one-to-one correspondence between
the external potential Ve, (r) acting on the system of interacting electrons, its
ground state density n,(r) and its set of eigenstates ¥, ({r}) , as demonstrated
by the first HK theorem. (Figure reproduced from Ref. [71])

a constant, by the ground state particle density n,(r).

Corollary 1: Since the hamiltonian of the system is thus fully determined,
except for a constant shift of the energy, it follows that the many-body
wavefunctions for all states (ground and excited), and consequently all
internal properties of the system, are completely determined from the
solution of the corresponding Schroedinger Equation given only the ground
state density.

2. Theorem 2: Any internal property of the system, including its total
energy, can be expressed as a unique functional of the density n(r), valid
for any external potential V., (r). For any particular V., (r) the exact
ground state energy of the system is the global minimum value of the
functional of the total energy E[n], and the density n(r) that minimizes
the functional is the exact ground state density ny(r).

Corollary 2: The functional E[n] alone is sufficient to determine only
the exact ground state energy and density. In general, excited states of
the electrons must be determined by other means.

The logic behind the HK theorems is summarized schematically in Fig 28. The
challenge posed by the Hohenberg-Kohn theorems is how to make use of the
reformulation of many-body theory in terms of functionals of the density. Such
a functional for the total ground-state energy of the system can be written in
general as:

En [n(r)] = Ts [n(r)] + Enartree [n(r)] + Exc [n(r)] + /dBrVem(r)n(r) + Epr
(26)

where Ej; is the interaction energy of the nuclei among themselves, and T'[n],
Enartree[n] and Exc[n] represent respectively the kinetic, classical Coulomb
interaction (Hartree) and Exchange-Correlation energies of the electron cloud,
all of which are internal properties of the electron system and are therefore
expressible as functionals of the density according to the second HK theorem.
At this stage however we are still left with the problem of finding explicit forms
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Figure 29: Schematic representation of the KS ansatz. The label “H K,,” denotes
the HK theorem applied to the non-interacting auxiliary system of electrons.
The connection in both directions between the two systems is established by
the arrow labeled “KS”, showing that in principle solution of the independent-
particle KS problem determines all properties of the original interacting system.
(Figure reproduced from Ref. [71])

for the constituent functionals in Eq. 26. While on one hand there exists a
simple expression linking the Hartree potential energy to the density:

Errartree 1] = % / Pty ) (27)

this task is more problematic for the Kinetic energy term T'[n], for which there
is no known direct connection to the density, and for the Exchange-Correlation
energy functional Exc[n] = Ex[n]+ E¢[n] incorporating all the complex many-
body exchange (Ex[n]) and correlation (FEc[n]) effects, which cannot be mod-
eled analytically.

A significant step forward from this impasse was accomplished by the seminal
work performed in 1965 by W. Kohn and L.J. Sham [63], which lead to the now
well-established Kohn-Sham (KS) approach to DFT . The defining Ansatz of
the KS formulation of DFT was to map the difficult interacting many-body
system obeying the Hamiltonian of Eq. 24 to a different fictitious auxiliary
system of non-interacting particles that can be solved more easily, with the
condition that its ground state density be equal to that of the original interacting
system and consequently that its internal physical properties be equivalent. This
leads to the relation between the actual and auxiliary systems depicted in Fig.
29. Even though it has never been proven formally that this auxiliary system
is capable of reproducing precisely all the physical properties of the original
interacting problem, this basic assumption yields excellent approximations for
the problems of greatest practical interest, and in particular for ground-state
calculations which are by far the most widespread applications of DFT. Solution
of the KS auxiliary system for the ground state can be viewed as the problem of
minimization of the total ground state energy functional of Eq. 26 with respect
to small variations in the density d(n(r,o)). One of the major qualities of the
KS approach is that it allows the electronic density of the indepent-particle
auxiliary system to be expressed as a simple sum of the probability densities
associated with each single-particle wavefunction ¢ (r):

Ne
n(r) = nr,o)=> > k) (28)
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The establishment of such a relation between density and wavefunctions allows
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in turn the functional for the kinetic energy in Eq. 26 to be kept expressed
in terms of the single-particle orbitals, without therefore the need to find an
explicit dependence on the density:

- ) R
To= =5 =D 2 (W7 | V) = —5 = 30 IV (29)

o i1=1 o =1

Given that all other functionals of the density in Eq. 26 can now also be
expressed in terms of the independent-particle orbitals ¢¢(r) via Eq. 28, the
problem of minimizing Eq. 26 to find the ground-state energy of the system can
be reformulated in terms of variations of the orbitals via the chain rule, which
yields the following variational equation:

5EN 5TS |: 5Eemt 5EHartree 5EXC (5TL(I‘7 0) -0 (30)

dg*(r) - dpZ*(r) + on(r,o) on(r,o) on(r,o) | 6y7*(r)
subject to the orthonomalization constraint on each of the single-particle or-

bitals:
(v | 05") = 611600 (31)

Using expressions 29 and 28 for calculating the derivatives involving the Kinetic
Energy and the density:

6Ts 1, o (p). on?(r) W
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and the Lagrange multiplier method for constrained minimization !, we obtain
the following set of Schroedinger-like equations, one for each of the N single-
particle orbitals in the auxiliary system:

(Hs —e7) 97 (r) =0
{y7 :i=1,N}

where the Lagrange parameters ¢; represent the possible eigenvalues. It is im-
portant to stress that these eigenvalues do not correspond to the single-particle
energies as in a normal Schroedinger Equation, and in fact have no obvious
physical meaning except for the highest one, which corresponds to the ioniza-
tion energy of the system. Hgg on the other hand represents the effective KS
Hamiltonian:
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Equations 33 and 34, collectively referred to as the Kohn-Sham equations, rep-
resent the culminating point of the entire KS formulation of DFT. By diag-
onalizing and solving the equations self-consistently (in practice by numerical
means) one can first compute all the single-particle KS eigenstates ¥¢ (r), and
from there the ground-state density and total ground-state energy of the original

1 An introduction to this mathematical technique is provided in section 5.9 in Ref. [98]
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interacting system from Equations 28 and 26 respectively, with an accuracy lim-
ited only by the approximations in the exchange-correlation functional (given
that all other functionals in Eq. 26 can be computed exactly within the KS
approach) . In fact, the development and availability today of highly accurate
exchange-correlation functionals with a broad range of applications has been the
determining factor for elevating DFT to its current position as the most accu-
rate, computationally-efficient and widely used technique for ab-initio electronic
structure calculations in a wide range of atoms, molecules and condensed matter
systems. The next section in this document is devoted to the description of the
approximations for this functional most entrenched in the Condensed-Matter
Physics community.

A.2 The Local Density and Generalized Gradient approx-
imations for the exchange-correlation energy func-
tional

Already in their seminal paper [63], Kohn and Sham pointed out that solids
can often be considered as close to the limit of the homogeneous electron gas.
In this limit, it is known that the effects of exchange and correlation are rather
local in character, and they proposed making the local density approximation
(LDA) (or more generally the local spin density approximation (LSDA), which
accounts also for the spins of the electrons in a spin-polarized system) in which
the exchange-correlation energy is simply an integral over all space, with the
exchange-correlation energy density exc([n],r) at each point r assumed to be
the same as in a homogeneous electron gas of interacting electrons with the
same local density:

B n) = [ drnmeis (n(r) = [ dPrnte) [ (n(w) + ™ ()]
(35)
The corresponding exchange-correlation potential appearing in the KS equations
is consequently given by:
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The only information needed within the LDA approximation is therefore the
exchange-correlation energy of the homogeneous gas as a function of density.
Since the exchange energy of an homogeneous electron gas can be calculated
analytically within Hartree-Fock theory, and is given by '2:

2 2
_ _§e kr _ 3e (kray) (37)
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where kp is the Fermi wavevector and a, the Bohr Radius, the LDA simply
boils down to fitting numerical correlation energies for the homogeneous gas,
for example by Monte Carlo total energy calculations [91, 14]. A variety of
LDA expressions for the correlation energy have been proposed with time, and
the most celebrated are summarized in Appendix B of Ref. [71]. The LDA

12 A derivation of this expression can be found in Chapt. 17 of Ref. [5].
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is expected to give the best results for solids close to a homogeneous electron
gas in which the charge density is slowly varying (like a nearly-free-electron
metal) and worst for very inhomogeneous cases, like for the case of atoms where
the density must go continuously to zero outside the atom, or indeed in any
general covalently-bound solid. However, experience has proved the LDA to be
a surprisingly good approximation for a wide variety of solid-state systems.

The remarkable success of the LDA in most applications has stimulated ideas
for the development of various Generalized Gradient Approximations (GGAs)
[87, 88, 90], with marked improvement over LDA in many cases. The first step
beyond the local approximation was the introduction of a functional of the mag-
nitude of the density gradient |Vn?(r)| in addition to the value of n(r) at each
point r, which lead to the so-called Gradient Expansion Approximation (GEA).
However, the GEA was found to often yield worse results than the LDA due to
the large density gradients found in real materials, which cause the expansion
to break down. The GGA provided the solution by introducing functions that
modify the behavior at large gradients in such a way as to preserve the desired
properties of the material under investigation. Within the the context of the
GGA, it is convenient to generalize the expression for the Exchange-correlation
functional given by Eq. 35 to include explicitly the dependence on the various
orders of the density gradient |V™n?(r)|:

ESSA In) = /d?’rn(r)exc (n,|Vn|,|Vn] ... |V™n|)
(38)

= /d?’rn( )™ (n) Fxc (n, |Vnl, n| ... [V™nl)

where Fx¢ is a dimensionless function, known as the enhancement factor of
the exchange-correlation functional, and €™ (n) is the exchange energy den-
sity of the homogeneous electron gas given by Eq. 37. An expression for the
exchange-correlation potential appearing in the KS equations can also be found
by calculating the change § Exc([n] to linear order in dn and 6Vn = Vin:

o SESEA n] dexc dexc
e = e~ et v ()|, o

It is natural to work in terms of dimensionless reduced density gradients of
h order that can be defined by:

A [V™n|
me (QkF)mTL

With this notation, the lowest order terms in the expansion of the exchange
part F'x and correlation part Fo of F'xc have been calculated analytically:

10 , 146 ,

(40)
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where F is expressed as a correction to the corresponding LDA expressions
for the exchange and correlation energy densities. One of the defining char-
acteristics of GGAs is that they lead to an exchange energy lower than their
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LDA counterparts, since F,, > 1. The resulting reduction of the cohesive en-
ergy improves markedly the agreement with experiment for atoms, molecules
and solids, and therefore constitutes a significant step forward over the LDA
overbinding [54, 23]. Numerous different forms have been proposed for the
higher-order terms in the expansions for Fo and F'x by choosing different phys-
ical conditions for s — oo, leading to very different behaviors in the region of
large density gradients. Hence, even if one form of GGA somehow gives the cor-
rect result for a certain physical property while others fail, the same form is not
necessarily superior for other properties in which different physical conditions
prevail.

A.3 Computational self-consistent solution of the Kohn-
Sham equations: the plane-wave pseudopotential method

In order to solve in practice the eigenvalue problem presented by the KS equa-
tions (33), the single-particle eigenstates ¥7 (r) must be expanded in some or-
thogonal basis set. The simplest and most popular choice for this basis is to use
orthogonal plane-wave functions, under the so-called orthogonalized planewave
(OPW) method [101, 46, 65] . These plane-waves can be expressed as !3:

Yie(r) = Y (G DT (43)

G

where k is the crystal momentum and the sum is over all Bravais lattice vectors
G of the reciprocal lattice of the system under investigation. This discrete basis
set can in theory be made infinite in size by application of periodic boundary
conditions to the problem, but in practice a finite number of plane-wave basis
states is normally sufficient to converge systematically most physical quantities
of interest in typical computational problems. As explained in Fig. 30, in order
to truncate the basis set, the sum term in Eq. (43) is limited to a set of reciprocal
lattice vectors encompassed by a sphere with radius defined by the cutoff kinetic
energy, Fey:
2 (1.2 2

h‘kQT:L_G‘" g Ecut (44)
so that the entire set of plane-waves can be defined by this maximum kinetic
energy component. More recently, the OPW method has been reformulated and
adapted to modern techniques for calculation of total energy, forces and stress
under the so-callled Projector-Augmented Wave (PAW) method [9], which in-
troduces projectors and auxiliary localized functions for a more efficient solution
of the KS eigenvalue problem.

The choice of plane waves as basis set however requires to be operated in
conjunction with the implementation of pseudopotentials [19, 93, 20] in order
to limit the size of this expansion to computationally-feasible proportions for
the solution of realistic systems. Pseudopotentials allow for a neat separation
between the treatment of core electrons in an atom, that is those electrons
which are tightly-bound to the nucleus and are therefore not involved in the
interactions between atoms, and the valence electrons, which on the other hand
are more loosely bound and consequently dictate the chemical properties of the

13This form for the plane-wave functions can be shown to be the most general solution
satisfying Bloch’s Theorem for periodic boundary conditions in a crystal lattice.
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Figure 30: Truncation of the plane wave basis states expansion at a sphere of
radius F.,; in reciprocal space. The blue dots represent the discrete reciprocal
lattice vectors available for the expansion. (Figure reproduced from Ref. [92].)

material. As a direct consequence of the orthogonality requirement on the single-
electron wavefunctions, the superposition of the valence and core electron wave-
functions results in a many-electron wavefunction exhibiting strong-oscillations
in the region near the nucleus, as illustrated in Fig. 31. These oscillations be-
come inevitably quite difficult to model using a plane-wave basis set, requiring
many plane-waves for an accurate description. It therefore becomes convenient
to ignore altogether the region in the immediate surroundings of the nucleus,
and this is indeed the approach adopted by the pseudopotential approxima-
tion, where only the valence electrons of atoms are explicitly considered and the
screening effects of the inner core electrons contained within the cutoff nuclear
radius r. indicated in Fig. 31 are integrated within a new effective ionic poten-
tial (the pseudopotential). The remaining smoother variation of the all-electron
valence wavefunction in the outskirts of the nuclear region beyond r. can be
modeled accurately with a much more restricted size for plane-wave basis set,
with the consequent sharp gain in computational efficiency. The pseudopotential
approach turns out to be an excellent approximation for practical calculations
since, as mentioned previously, this region remains almost completely shielded
from all neighboring interactions, and the oscillations are consequently of very
little consequence for the electronic structure of the solid.

When constructing a new pseudopotential, the main goals that need to be
attained are threefold: firstly, the pseudodpotential should be as soft as possi-
ble, meaning that it should allow expansion of the valence pseudo-wavefunctions
using as few plane-waves as possible. Secondly, it should be as transferrable as
possible, in the sense that a pseudopotential generated for a given atomic con-
figuration should accurately reproduce others. This helps to ensure that its ap-
plication in solid-state systems, where the overall crystal potential is inevitably
different from an atomic potential, be capable of reliable results. Finally, the
pseudo-charge density, that is the charge density constructed using the pseudo-
wavefunctions, should reproduce the valence charge density of the atom under
consideration as accurately as possible. The concept of norm-conservation in
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Figure 31: Schematic representation of the concept of pseudopotential. ¥ labels
the true all-electron wavefunction, while ¥,scuqo the all-electron pseudowave-
function which results from subsituting the true bare Coulombic nuclear poten-
tial Z/r with the modified pseundopotential Vj,seyqdo incorporating the screening
effects of the inner core electrons. The smooth variation of ¥ beyond the core
radius 7. implies that an accurate emulation of the atomic interaction with
Wyseudo requires only a limited plane-wave basis expansion, thus making the
pseudopotential a very efficient approximation for most atomic systems. (Fig-
ure reproduced from Ref. [92].)

pseudopotential theory [42] provided the first systematic solution for reconciling
these conflicting goals. Within norm-conserving pseudopotentials, the pseudo-
wavefunctions are designed and constructed to be equivalent to the actual va-
lence wavefunctions outside the core radius r.. Inside r. on the other hand, the
pseudo-wavefunctions are allowed to differ from the true wavefuntions, but their
norm is constrained to be the same.

A radical departure from the concept of norm-coservation in pseudopoten-
tials was eventually proposed by Vanderbilt and co-workers [104, 68, 67]. In this
approach, which became to be known as the ultra-soft pseudopotential method,
the pseudo-wavefunctions are required to be equal to the all-electron wavefunc-
tions outside r. as with norm-conserving pseudopotentials, but inside r. they
are allowed to be as soft as possible, which is accomplished by removing the
norm-conservation constraint. Even though the use of non-normalized wave-
functions complicates the solution of the KS equations, this approach offers the
major advantage of greatly reducing the required plane-wave cutoff without sac-
rificing the accuracy of the calculation, which explains its popularity for use in
large-scale calculations. The computational work presented in this report was
no exception.

One final aspect of the computational implementation of DFT worth men-
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tioning is the techniques used for determining the charge density and other
quantities which can be extracted from DFT calculations such as total energy
and atomic forces. The evaluation of all these quantities require summations
to be performed over the occupied states, which for crystals translate into inte-
grals over the Brillouin zone. Exploiting the symmetry properties of the crys-
tal, this integration can then be limited to the symmetry-irreducible wedge of
the zone (IBZ). In practice, these integrals are calculated numerically using
wavefunctions and eigenvalues at a finite number of k-points in the electronic
bandstructure of the IBZ. This leads to the so-called special points method for
Brillouin-zone integration [16, 27, 6], the most commonly used approach for
this type of calculations, in which integrations are performed as weighted sums
over a grid of representative, or special, k-points chosen to yield optimum con-
vergence for smoothly varying functions of k. This application of the special
points method however proves problematic for the case of metals, where elec-
tronic bands intersect the Fermi energy Ey. This leads to discontinuities in the
electronic occupation numbers and therefore in the integrands at the Fermi sur-
face, thus yielding slower convergence for a given number of k-points. This dif-
ficulty can be overcome by the introduction of an artificial temperature-induced
and convergence-accelerating broadening of the Fermi surface corresponding to
a smoother electron distribution function than the original step function, such
as a finite-temperature Fermi distribution. Care must however be taken to en-
sure that the introduction of such broadening factor does not affect physical
quantities of interest.

Once equipped with all the above-mentioned computational models and tech-
niques, a solution to the set of KS equations minimizing the total energy func-
tional of Eq. (26) can be found numerically according to the iterative scheme
portrayed in Fig. 32. Any valid solution must be self-consistent, meaning that it
must be subject to the constraint that the effective KS potential ViZ¢(r) and the
resulting electron density n(r, o) be consistent with one another, as highlighted
in the figure. In practice this is done by successively looping over changes in
VZ4(r) and n(r, o) until the self-consistent agreement is reached.
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Figure 32: Flow chart illustrating the self-consistent iteration for solving the
KS equations. (Figure reproduced from Ref. [71])
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B Phonons from Density Functional Perturba-
tion Theory

The starting point in all formulations of Density Functional Perturbation Theory
(DFPT), for expanding the DFT method outlined in the previous appendix to
systems perturbed away from their equilibrium configurations, is the expansion
of the Kohn-Sham (KS) single-particle orbitals, densities and self-consistent
potentials in perturbation series of the general form:

X)) =XO pax® 4 22X@ 4 \3x® 4 (45)

where X () is the quantity of interest and A is the perturbing parameter. For
the case where the quantity of interest is the total energy of the system and
where the perturbations consist in atomic displacements away from equilibrium
positions, we see that Eq. (45) reduces to a similar expression as the orig-
inal quadratic form for the expansion of the harmonic potential energy (Eq.
(16)), in which E(© is the total ground-state energy, the E(!) are the atomic
forces, the E() are the sums of force constants which determine the phonon
dispersion curve, and the E®) represent the cubic anharmonic terms which can
be neglected within the harmonic approximation together with all higher-order
terms. The theoretical cornerstone underlying DFPT is the so-called 2n + 1
theorem, which asserts that variations of the energy up to order 2n + 1 in a
perturbation expansion are determined using only variations in KS orbitals up
to order m. Consequently, the atomic forces (the terms of first order in the
perturbation expansion of the energy) can be determined directly from the un-
perturbed (n = 0) KS orbitals. This special case of the 2n+1 theorem for forces
is also known as the Hellmann-Feynman theorem, and can be proven indepen-
dently from elementary quantum mechanical perturbation theory. Although the
existence of this theorem is not relevant within the context of the linear-response
method, it makes DFT codes useful in any computational task relying on the
evaluation of atomic forces in crystals, such as the small-displacement method
described previously.

As already mentioned, in the context of phonon calculations the main term
of interest is E(?), and this can be determined together with the first anharmonic
term E®) from the linear response of the KS orbitals, (1. () is given in turn
by the solution of the first-order Sternheimer equation:

(HO =) = = (HO =) ¥ (46)

where i labels the i*" solution to the set of KS equations, and 550) and 551)

represent respectively the unperturbed and first order perturbed KS energy
eigenvalues for the i*" solution to the KS equations. An expression for the
first-order variation in the energy eigenvalues sz(-l) can be found by imposing the
following orthogonalization constraint on the KS orbitals:

(6 |w) =0 (47)

which gives:

e = (v | HOp”) (48)
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Furthermore, H® in Eq. (46) represents the unperturbed KS Hamiltonian
and H() its first-order perturbed variation. In addition to the external per-

turbing potential V;(;t) (r) induced by the phonon displacement wave traveling

through the crystal, H®) includes also the contributions that Ve(mlt) (r) makes to
the Hartree and Exchange-Correlation potentials due to the perturbations it

induces in the electronic charge density of the crystal n(r):

nM (r )%
O = Ve + [ @i [ErEeane) )

where n!)(r) is the first-order variation in the charge density, given in terms of
the KS orbitals as:

nO@) = [(V@) [0m) + (0@ | eV@)] 60

i=1

Moreover, it has been assumed in Eq. (49) that the kinetic energy term in the
KS hamiltonian remains unaffected by the external perturbation.

Given the above expressions for H) and el(.l), the Sternheimer equation of
Eq. (46) can be reduced to a simple linear problem in the plane-wave basis set
used for expanding the KS orbitals. Since H) depends on n)(r) , any solution
has to be self-consistent in the same sense as explained previously in Section
A.3 for the case of the unperturbed ground state KS equations. In particular,
the first step in the solution of the linear response problem involves solving
self-consistently the unperturbed KS equations to obtain n(®) (r), wi(o) and 51(-0).
Then, keeping these fixed, Eq. (46) and Eq. (50) are solved iteratively for the
first order perturbations in, respectively, the KS orbitals wi(l) and the charge
density n(!) (r), until a self-consistent solution is found.
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