
Chapter 2

Theoretical Background

2.1 Basics of Crystallography

2.1.1 Introduction to the general features of crystals

This and the next sections aim at equipping the reader with the essential knowl-

edge of crystallography and X-ray diffraction deemed necessary to gain a better

understanding and appreciation of the various crystal structures considered in

the context of the research presented in this thesis. For a full introduction to

the theory of crystals, the reader is referred to one of the many textbooks on

Condensed Matter physics ???? and X-ray diffraction ????

Materials in the crystalline state are widespread and play a role of paramount

importance in many everyday applications. A solid is considered to be crystalline

if at the microscopic level its atoms are arranged in a three-dimensional periodic

array. This was directly confirmed through the experimental work of W. and

L. Bragg on X-ray diffraction by crystals. Crystals are generally-speaking very
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regular in shape and exhibit a significant amount of symmetry. This is apparent

from both the point of view of the external morphology of crystals, which is found

to be bounded by planar surfaces, and from that of the interior structure, which

can be understood from the preferred directions along which crystals cleave when

fractured. This suggests that the macroscopic form of a crystal depends on the

underlying structure at the atomic or molecular level, and that the fundamental

factor which controls crystal formation is the way in which atoms and molecules

pack together. Examples of this regular shape are the well-formed crystals of

alum, which have the shape of a perfect octahedron, and quartz crystals, which

have cross-sections that are regular hexagons.

2.1.2 Bravais Lattices

The most fundamental concept in the description of crystalline solids is the Bra-

vais Lattice, which explains the geometry of the underlying periodic structure

of atoms in a crystal, regardless of what the actual chemical composition of the

crystal may be. There are two equivalent definitions of a Bravais Lattice:

1. A Bravais lattice is an infinite periodic array of abstract discerete lattice

points with an arranegement and orientation that appears exactly the same

from whichever of the points the array is viewed . This is to say that all

lattice points are equivalent, and the array is therefore periodic.

2. A three-dimensional Bravais lattice consists of the set of all lattice points

with positions vectors
−→
R relative to one of the points of the form:

−→
R = n1

−→a1 + n2
−→a2 + n3

−→a3 (2.1)
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which are known as Bravais Lattice Vectors. The three −→a vectors must not

lie in the same plane, and the n coefficients are integers. The −→a vectors are

known as primitive translation vectors and are said to generate or span the

Bravais Lattice.
−→
R corresponds to the displacement vectors between any

two Bravais lattice points , that is the sum or difference of any two Bravais

lattice vectors, including the Bravais lattice vectors themselves.

An important property of all Bravais Lattices is that they have translational

symmetry, and therefore are invariant under a translation by a displacement

vector
−→
R between any two Bravais Lattice points.

−→
R therefore represents the

periodicity of the Bravais lattice. As a result, any local physical property of the

crystal is invariant (periodic) under
−→
R , such as the charge concentration, electron

number density, or magnetic moment density. For any given Bravais lattice the

set of primitive vectors is not unique, and there are infinitely many nonequivalent

choices , just like basis sets in linear algebra for vector spaces. Hence the most

convenient set is typically chosen. There are three Bravis lattices, in addition

to the simple cubic (sc) lattice, that are of enormous importance since a great

variety of solids crystallise in these forms with a repeating unit like a molecule or

atom at each lattice site, and serve to illustrate many of the general features of

Bravais lattices which have just been outlined. These are the body-centred cubic

(bcc) and face-centred cubic (fcc) Bravais Lattices:

1. bcc lattices are formed by adding to the sc lattice an additional point at the

centre, as shown in Fig. 2.1. The bcc lattice can be easily shown to have

more than one set of primitive vectors. If the original sc lattice is generated

by primitive vectors ax̂, aŷ, aẑ, where x̂, ŷ, ẑ form an orthornormal basis set
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Figure 2.1: From left to right: the sc, bcc and fcc Bravais lattices. The solid lines
indicate the bonds between the atoms. The lattice constant a (same on all sides)
is also indicated.

and a is the length between points in the lattice, then a set of primitive

vectors for the bcc lattice is:

−→a1 = ax̂ −→a2 = aŷ −→a3 =
a

2
(x̂+ ŷ + ẑ) (2.2)

A more symmetric set is:

−→a1 =
a

2
(ŷ + ẑ − x̂) −→a2 =

a

2
(ẑ + x̂− ŷ) −→a3 =

a

2
(x̂+ ŷ − ẑ) (2.3)

2. fcc lattices are obtained by adding to the sc lattice an additional point in

the centre of each square face, as shown in Fig. 2.1. A symmetric set of

primitive vectors for the fcc lattice is:

−→a1 =
a

2
(ŷ + ẑ) −→a2 =

a

2
(ẑ + x̂) −→a3 =

a

2
(x̂+ ŷ) (2.4)
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Figure 2.2: Notation for lattice parameters and angles between crystal axes.

The points in a Bravais lattice that are closest to a given point are called

its nearest neighbours. Because of the periodic nature of a Bravais Lattice, each

point has the same number of nearest neighbours. This number is thus a property

of the Bravais lattice, and is referred to as the coordination number of the lattice.

The sc lattice has coordination number of 6, bcc lattice of 8, and a fcc lattice of

12.

2.1.3 Unit Cells

The unit cell of a Bravais lattice is defined as a parallelepiped-shaped volume

which, when reproduced by close-packing in 3D, gives the whole Bravais lattice.

The shape of a parallelepiped is completely defined by the lengths of the three

sides a, b and c, known as the crystal axes (or lattice constants) of the unit cell,

and the values of the three angles α, β and γ, such that α lies between the b and

c axes, β between the a and c axes, and γ between the a and b axes, as shown in

Fig. 2.2. Most Bravais lattices can have many possibilities for a unit cell, which

differ between them in the set of translations necessary to fill the whole space

without either overlapping or leaving voids.

As explained below, there are two main choices for unit cells, the Primitive
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unit cell and the Conventional unit cell. Both types of unit cells are always par-

allelepipeds, with lattice points at all eight corners. The main difference is that

primitive unit cells contain only one lattice point, whereas the conventional ones

contain more than one lattice point. In particular, in primitive unit cells each

lattice points is shared between eight unit cells, whereas in conventional unit

cells, in addition to the eight lattice points at the corners of the paralellepiped,

there is a lattice point in the interior or on the surface of the cell. It can be

deduced that the representations of the bcc and fcc lattices in Fig. 2.1 corre-

spond to conventional unit cells, while that of the sc lattice can be thought of as

being either primitive or conventional, since the two are equivalent in this spe-

cial case. In general, conventional unit cells are more useful since they convey

more readily the overall symmetry of the underlying lattice. It follows that the

conventional unit cell is normally the most symmetrical among all the possible

choices for a unit cell, such that they contain all the symmetry elements of the

lattice that they represent. Primitive unit cells on the other hand are always

minimum-volume cells, which is a property of the Bravais lattice. Even with this

definition however there is still no unique way of choosing a primitive unit cell

for a given Bravais lattice. The obvious primitive unit cell to associate with a

particular Bravais lattice is the parallelepiped whose sides are delineated by the

three primitve translation vectors, used to define the Bravais lattice points, ap-

plied to the lattice point occupying one of the eight corners. The Primitive unit

cell has often the disadvantage of not displaying the full symmetry of the Bravais

lattice. For example the primitive unit cells of the bcc and fcc lattices for the

choice of primitive vectors of Eq. (2.3) and Eq. (2.4) respectively are oblique

parallelepipeds as shown in Fig. 2.3, and therefore do not have the full cubic
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Figure 2.3: Conventional and primitive (shaded in red) unit cells for the bcc (left)
and fcc (right) Bravais lattices. For the bcc lattice, the primitive cell has half
the volume of the conventional, whereas for the fcc lattice it has one quarter the
volume of the cube. In both cases the primtive cells have obviously much less
symmetry than the conventional.

symmetry of the lattices in which they are embedded.

In general there are three main types of Conventional unit cells which together

suitably represent the symmetry of all possible Bravais lattices. The distinction

between these is based on the position of the lattice points within the unit cell.

They are known as Side-centred, Face-centred and Body-centred, and are con-

ventionally referred to with letters as explained below:

1. Side-centred unit cells (letter designation A,B or C): apart from the lattice

points on the eight corners of the unit cell, they have lattice points in the

middle of the pair of faces perpendicular to one of the crystal axes. The

letter designation corresponds to the perpendicular crystal axis a, b or c.

2. Face-centred unit cells (letter designation F): effectively equivalent to si-

multaneous A,B and C-face centring. fcc lattices belong to this category.
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Table 2.1: Number of lattice points contained in the various classes of unit cells
presented so far in this section.

Unit cell type Z
Primitive 1 (by definition)

Conventional - Side centred 2
Conventional - Body centred 2
Conventional - Face centred 4

3. Body-centred unit cells (letter designation I): apart from the points on the

eight corners of the unit cell, they have a lattice point in the middle of the

unit cell. bcc lattices belong to this category.

Table 2.1 summarises the number of lattice points Z in each type of unit cell.

2.1.4 Miller index labelling system for crystal planes

The orientation of a crystal plane is determined by three points in the plane,

provided that they are not collinear. We can specify the orientation of a plane

by the indices determined according to the following rules:

1. We first find the intercepts of the plane with the three crystal axes a, b and

c, in the units of the crystal axes themselves. The axes may be those of a

primitive or non-primitive unit cell, as long as a consistent set of axes is

used to interpret the indices unambiguously. When the Bravais lattice is

cubic for example, the simple cubic crystal axes of the conventional unit

cell are invariantly used.

2. We then take the reciprocals of these intercepts and reduce them to the

smallest three integers with no common factors. The result, enclosed in

parentheses (hkl), are called the Miller indices of the plane.
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3. For an intercept of infinity, that is if the plane is parallel to a given axis,

the corresponding index is zero.

4. If a plane crosses the origin, then it suffices to take any parallel plane not

passing through the origin to find its indices.

5. The indices may denote a single plane or a whole family of parallel lattice

planes (since parallel planes in general have proportional intercepts).

6. If a plane cuts an axis on the negative side of the origin, the corresponding

index is negative, indicated by placing a bar above the index like so:
(
hkl

)
.

7. The Miller indices depend on the choice of crystal axes and hence are related

to a particular unit cell. They are therefore not uniquely defined for a given

crystal face. However, no matter which unit cell is chosen, one can always

find a set of Miller indices for each face.

The indices of some important planes in a cubic crystal are illustrated in Fig.

2.4 for representative purposes.

There is also a notation for planes that are equivalent by virtue of the sym-

metry of the crystal, which can be denoted by curly brackets around the indices.

For example, the faces of a cubic crystal are (100), (010), (001),
(
100

)
,
(
010

)
and(

001
)
. Collectively, these planes are referred to as the {100} planes. In general,

one uses {hkl} to refer to the (hkl) planes and all those that are equivalent to

them by virtue of the crystal symmetry.

An index system also exists to label directions in crystals. The indices [uvw]

of a direction in a crystal are the set of the smallest integers that have the ratio of

the components of a vector in the desired direction. A particular choice of crystal
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Figure 2.4: The Miller indices (hkl) of the symmetry planes in a cubic crystal.

axes −→a1 , −→a2 and −→a3 serves as the basis set, such that they lie in the [100], [010] and

[001] directions respectively. Thus in general the lattice point n1
−→a1 +n2

−→a2 +n3
−→a3

lies in the direction [n1n2n3] from the origin. In cubic crystals the direction [hkl]

is perpendicular to a plane (hkl) having the same indices, but this is not generally

true in other crystal systems. The notation used to label directions related by

symmetry collectively (as is done for lattice planes) is to enclose the indices in

triangular brackets 〈uvw〉. Hence for example the [100], [010], [001],
[
100

]
,
[
010

]
and

[
001

]
directions in a cubic crystal are referred to, collectively, as the 〈100〉

directions.

2.1.5 Lattice with a basis: crystal structures

A physical crystal is described by its underlying Bravais lattice together with

its basis (or repeated structural unit). The basis describes the arrangement and
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Figure 2.5: The crystal structure of a solid is formed by the convolution of the
basis to every lattice point in the Bravais lattice.

composition of the chemical unit (be it an atom or molecule) associated with each

lattice point in the Bravais lattice. A basis of atoms is attached to every lattice

point, with every basis identical in composition and orientation. The basis does

not have to be centred on the lattice point, as it can also be displaced relative

to it. In general, the basis can consist of single atoms (as in metals), groups

of atoms, molecules (as in organic crystals), groups of molecules or ions. The

atoms or molecules in the basis in particular can be different from one another.

The fact that many atoms can be associated with a lattice point means that

even a primitive unit cell can contain many atoms. The basis convolved with

the underlying Bravais lattice therefore gives the physical crystal structure of the

crystalline solid, consisting in identical copies of the same basis located at the

locations of all the points of a Bravais lattice. The concept of crystal structure is

illustrated in Fig. 2.5.

It is possible for one compound to adopt more than one crystal structure

under different conditions of crystallisation (such as different rates of crystallisa-
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tion, different temperatures or pressures, different solvents). This phenomenon

is called polymorphysism, and is important because different crystal structures

can have drastically different physical and chemical properties. In the context of

the research presented in this thesis, an important example of crystal structure

which will be considered is the cubic diamond crystal structure portrayed in Fig.

2.6. The cubic diamond structure consists of two interpenetrating fcc Bravais

lattices , displaced along the body diagonal of the cubic cell by one quarter the

length of the diagonal. Hence it corresponds to a single fcc lattice with a two

atom basis at atomic positions (000) and
(
1
4
1
4
1
4

)
relative to the crystal axes of the

conventional cubic unit cell. Its coordination number is consequently 4, with the

four nearest neighbours of each point forming the vertices of a regular tetrahe-

dron. The diamond structure is not a Bravais lattice, because the environment of

any point differs in orientation from the environments of its nearest neighbours.

The structure bears its name from the crystal structure of diamond, where the

two-atom basis consists of Carbon atoms.

2.1.6 Symmetry transformations of Bravais Lattices and

Crystal Structures

There are two kinds of symmetry in crystallography: external, which relates to

crystal macroscopic shapes, and internal, which relates to the atomic arrangement

in the underlying unit cells. Clearly the symmetry of a macroscopic crystal as a

whole is inherently connected with the symmetry of the constituent unit cells. All

the symmetry elements of the crystal are in fact guaranteed to be always found

in its unit cells. From the point of view of symmetry, a Bravais Lattice/Crystal
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Figure 2.6: Conventional cubic unit cell of the cubic diamond crystal structure,
with the nearest-neighbour bonds drawn between the atoms.

Structure is characterised by all rigid operations that transform the lattice into

itself, and under which the lattice is therefore invariant . In this context rigid

means operations that preserve the distance between all lattice points. When

a rigid operation transforms the lattice into itself, it is known as a symmetry

transformation or symmetry element of the Bravais lattice/Crystal structure.

The set of all symmetry transformations of a Bravais lattice/Crystal structure

is known as the symmetry group or space group of the Bravais lattice/Crystal

structure. Even though symmetry elements apply to the whole lattice, we can

consider just a single unit cell that exhibits the full symmetry of the Bravais lattice

and that therefore has the same symmetry elements of the full space group of the

Bravais lattice. This is known as a symmetry unit cell, and often consists in a

conventional and not primitive unit cell. The symmetry transformations in the
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space group of a Bravais lattice consist in: 1

1. Translations: described by a translation vector which is applied equally

to all lattice points. A translation i a symmetry operation of the Bravais

lattice if and only if the translation vector T̂ has the form T̂ =
∑
i

ni
−→ai , and

therefore corresponds to any of the possible Bravais lattice vectors (or their

sums or differences). In a translation all points are translated, and so no

point stays fixed.

2. Rotations: described by a rotation axis passing through at least one lattice

point, and a rotation angle. For a rotation to be a symmetry transformation

of a Bravais lattice, the rotation angle must be an integral multiple of 2π/n

radians, where n is an integer. The axis is then called an n-fold rotation

axis. A Bravais lattice can contain only 1- (trivial case of identity), 2-

(diad), 3- (triad), 4- (tetrad), or 6-fold (hexad) axes. Hence for an n-fold

rotation axis, you need to rotate the lattice n times to get back to the initial

position (2π rotation), with each step being a symmetry operation in its

own right. In a rotation, the only points that stay fixed are those that lie

on the rotation axis.

3. Reflections: described by a mirror plane containing at least a lattice point.

The object is replaced with its mirror image with respect to the mirror

plane. In a reflection, the only points that stay fixed are those that lie on

the mirror plane.

1These symmetry transformations are applicable to both Bravais lattices and Crystal struc-
tures, unless otherwise stated. This does not however mean that a crystal structure has neces-
sarily the same set of symmetry elements as its underlying Bravais lattice.
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4. Inversions: described by an inversion point corresponding to a lattice point

P . This inversion point takes the point with coordinates −→r (with respect

to P as the origin) into
−→−r. The inversion operation is composed of a

rotation of π followed by reflection in a plane normal to the rotation axis.

In an inversion, the inversion point is the only point that stays fixed. The

inversion is a symmetry transformation for the lattice if for every point at

vector position −→r there is an equivalent point located at
−→−r, in which case

the inversion point is called centre of symmetry and the lattice is said to be

centro-symmetric with respect to that point.

Following the four symmetry operations outlined above, there are three more

operations that can be obtained by combining two of the above transformations.

1. Rotation-Inversions (Improper rotations): sometimes a rotation through

2π/n followed by an inversion with respect to a point lying on the rotation

axis is a symmetry transformation, even though the rotation by itself is not.

The axis is then called an n-fold inversion axis, and is labelled as n. Since 1

and 2 are equivalent to a centre of symmetry and mirror plane respectively,

they are not included here as inversion axes (the only inversion axes are 3,

4, 6). In a rotation-inversion, the only point that stays fixed is the inversion

point on the inversion axis.

2. Screw Axes (Crystal structures only): a crystal structure with a screw axis

is transformed into itself by translation through a non-Bravais lattice vec-

tor, followed by a rotation about an axis parallel to the translation vector

(the screw axis). In general the symmetry element Rd along the a direc-

tion involves a rotation 2π/R about the a axis followed by a displacement
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(D/R)−→a .

3. Glide planes (Crystal structures only): a lattice with a glide plane is trans-

formed into itself by translation through a non-Bravais lattice vector, fol-

lowed by a reflection with respect to a plane parallel to the translation

vector (the glide plane). The description of this symmetry element is sim-

plified by reference to the vectors −→a ,
−→
b and −→c which define the edges of

the unit cell. One may have an a-glide plane parallel to the a crystal axis,

and also b− and c− glide planes parallel to b and c respectively. An n-glide

plane is one which, if perpendicular to c, gives a displacement component

1/2a+ 1/2b.

Fig. 2.7 summarises all the symmetry operations and gives their graphical

and written symbols used to represent them.

In general any symmetry operation of a Bravais lattice can be compounded out

of two other symmetry operations: a translation through a Bravais lattice vector

−→
R and a rigid operation leaving at least one lattice point fixed (the translation by

itself leaves no point fixed). These are known as point operations, and include all

symmetry operations that are not translations. As explained above, the types of

point operations are Inversion, Reflection, Rotation and Rotation-Inversion. The

subset of all point symmetry operations is known as the point group of the Bravais

lattice. There turn out to be only seven distinct point groups that a Bravais lattice

can have, known as crystal systems. When one relaxes the restriction to point

operations and considers the full symmetry griup of the Bravais lattice (including

therefore translational symmetries), there turn out to be 14 distinct space groups

that a Bravais lattice can have. Thus from the point of view of symmetry (space
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Figure 2.7: Symmetry operations in Bravis lattices and Crystal structures, to-
gether with the symbols used to represent them.

groups) there are 14 different kinds of Bravais lattices. A summary of the names

and structural properties of the conventional unit cells (which also correspond

to the symmetry unit cells) of these 14 Bravais lattices is presented in Fig. 2.8.

Lines connect the lattice points to clarify the relationships between them. In the

absence of any symmetry, the three axes of these conventional unit cells have

different lengths and the three angles are different from each other and from 90
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Figure 2.8: The seven crystal systems and 14 Bravais lattices, as defined from the
symmetry elements that they possess. The geometry and type of conventional
unit cell is indicated for each Bravais lattice. The symmetry of the crystal systems
increases moving down the table.

◦. In the presence of symmetry elements, there are restrictions and special values

of the unit cell parameters.
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Table 2.2: Number of point and space groups of Bravais lattices and crystal
structures.

Bravais lattice Crystal Structure
(Basis of spherical symmetry) (Basis of arbitrary symmetry)

No. point groups: 7 32
(the seven crystal systems) (the 32 crystallographic point groups)

No. space groups: 14 230
(the 14 Bravais lattices) (the 230 Crystal structures)

We now perform a similar analysis not on Bravais lattices but on general crys-

tal structures. We take as the basis of the crystal structure an arbitrary object,

and try to classify the symmetry groups of the crystal structure so obtained. The

symmetry transformations that transform the crystal structure into itself now

depend both on the symmetry of the object (internal symmetry of the basis) and

the symmetry of the underlying Bravais lattice. Because the objects no longer

have the maximum spherical symmetry like the individual lattice points of a

Bravais lattice, the number of symmetry transformations and possible symmetry

groups is greatly increased. There turn out to be 230 different space groups that

a lattice with a basis can have, and therefore from the point of view of symmetry

there are 230 distinct crystal structures. The possible point groups of a general

crystal structure have also been enumerated. These contain the symmetry op-

erations that take the crystal structure into itself while leaving one point fixed

(non-translational point operations). There are 32 distinct point groups that a

crystal structure can have, known as the 32 crystallographic point groups. A

summary of the number of point and space groups for both Bravais lattices and

crystal structures is presented in table 2.2. Table 2.3 instead shows how the

numbers of space and point groups are split across the seven crystal systems.
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Table 2.3: Numbers of point and space groups in each crystal system.

Crystal system No. of point groups No. of Bravais lattices No. of space groups
Triclinic 2 1 2

Monoclinic 3 2 13
Orthorhombic 3 4 59
Tetragonal 7 2 68

Rhombohedral 5 1 25
Hexagonal 7 1 27
Cubic 5 3 36
Total 32 14 230

2.1.7 Nomenclature for crystallographic point groups and

space groups

Due to the shear number of crystallographic point groups (32) and crystal struc-

ture space groups (230), it is useful to introduce a nomenclature system, instead

of resorting to general names like in the case of Bravais lattices. Here we shall

consider only the international nomenclature system (also known as Hermann-

Maugin notation). The conventions used to list the symmetry elements in the

group are the same for both space groups and point groups. We shall consider

first the space group nomenclature as it is more general than the one for point

groups. Space groups are labelled according to a general name structure of the

form Lijk, where in general L denotes the type of symmetry unit cell of the un-

derlying Bravais lattice and ijk denote the symmetry elements of the space group

for the different symmetry directions.

The first thing that has to be specified in the name of a space group of a

crystal structure if the type of symmetry unit cell of the corresponding Bravais

lattice. As explained before, for each of the 14 Bravais lattices the symmetric unit

cell can either be Primitive or Conventional. The meaning of the capital letters
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(P,A,B,C,F,I) assigned to the various types of symmetry unit cells has already

been explained in section 2.1.3. The symmetry unit cells for all 14 Bravais lattices

were presented in Fig. 2.8.

The letters and numbers that follow the initial capital letter are the sequence of

symmetry elements of the space group. The symbols for the symmetry elements

follow the convention of Fig. 2.7. Their position in the sequence relative to

the capital latter tells in what symmetry direction they are either orthogonal to

or coincident with. From the point of view of space group nomenclature, it is

convenient to divide symmetry operations in the following two groups:

1. Operations with reflections (mirror planes and glide planes), which are al-

ways noted by small latters (a,b,c,n or m), are positioned according to which

direction the mirror plane is orthogonal to.

2. Operations with rotation axes (simple rotations, screw axes, inversion axes)

are positioned according to which direction the rotation axis lies in.

3. The centre of symmetry operation has no reference to directions.

Finally, to include multiple symmetry elements along the same direction one

uses a ”/” symbol. Hence, for example, the notation 2/m means that for a given

symmetry direction there is a diad rotation axis along that direction and a mirror

plane perpendicular to it. The symmetry directions i, j, k di not necessarily have

to be along the crystal axes a, b, c. The directions of the i, j, k symmetry axes in

each of the crystal systems is explained in table 2.4

Hence for the monoclinic and orthorhombic systems (where all three crystal

axes are different in length), the symmetry directions and the cell axes are co-

incident. In crystal systems where at least one axis is equal to another axis
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Table 2.4: Directions of the symmetry labels ijk in the space group nomenclature
relative to the crystal axes.

System Symmetry directions

Triclinic none
Monoclinic i - along a axis

j - along b axis
k - along c axis

Orthorhombic i - along a axis
j - along b axis
k - along c axis

Tetragonal i - along c axis (4-fold)
j - along a and b axes

k - along diagonal between a and b
Trigonal/Hexagonal i - along c axis (3-fold)

j - along a and b axes
k - along diagonal between a and b

Cubic i - along a and b and c
j - along diagonal between a and b, b and c, and a and c

k - along diagonal between a and b and c

(tetragonal, cubic, trigonal, hexagonal), the crystal axes now are not coinci-

dent with the symmetry directions. I general, if a symmetry operation exists

along/perpendicular one axis, then a similar operation will exist down the equal

axis. Operations along/perpendicular to equivalent axes are not repeated to avoid

redundancy. In general, only the fundamental symmetry elements are included in

space group notation. We know that if two symmetry operations meet in space,

a third operation is formed, and elements that arise directly as a result of the

presence of other elements are discarded to avoid redundancy. For example two

orthogonal mirror planes automatically generate a diad axis along the line of their

intersection, which need not be stated to avoid redundancy. The space group no-

tation does not therefore necessarily need to note all symmetry operations in the

unit cell. Some of them can be implied from the notation itself.
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The same exact conventions apply to the naming of crystallographic point

groups, except that the capital letter labelling the unit cell type is not mentioned.

Of course, point groups include only point operations for the crystal structure,

so that glide planes and screw axes never appear.

2.1.8 The reciprocal lattice

The lattice reciprocal to a Bravais lattice (the reciprocal lattice) plays a funda-

mental role in the analysis of how periodic structures behave under diffraction by,

for example, X-rays. The definition of reciprocal lattice stems from considering a

set of Bravais lattice vectors
−→
R constituting a Bravais lattice, and a plane wave

ei
−→
k ·−→r . For a general wave vector

−→
k such a plane wave will not of course have

the periodicity of the Bravais lattice, but for certain special choices it will. The

reciprocal lattice of a Bravais lattice embodies the set of all wave vectors
−→
K (or

−→
G ) that yield plane waves with the periodicity of a given Bravais lattice. The

−→
K

vectors are then known as the reciprocal lattice vectors. Analytically,
−→
K belongs

to the reciprocal lattice of a Bravais lattice of points
−→
R provided that the relation

ei
−→
K ·(−→r +

−→
R) = ei

−→
K ·−→r (2.5)

holds for any −→r , and for all
−→
R in the Bravais lattice. Factoring out ei

−→
K ·−→r , we

can characterize the reciprocal lattice as the set of wave vectors
−→
K satisfying

ei
−→
K ·−→R = 1 (2.6)

for all
−→
R in the Bravais lattice. It must be emphasised that a reciprocal lattice

is always defined with reference to a [articular Bravais lattice. The Bravais lattice
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that determines a given reciprocal lattice is then referred to as the direct lattice,

when viewed in relation to its reciprocal. It must also be noted that, given

the above definition, the reciprocal lattice lies in the Fourier (reciprocal) space

associated with the crystal. −→r and
−→
k therefore constitute a pair of reciprocal

(conjugated) coordinates. In particular, if vectors in the direct lattice have the

dimensions of [length], vectors in the reciprocal lattice have the dimensions of

[1/length].

The reciprocal lattice is itself a Bravais lattice, according to both definitions

of Bravais lattice. The proof of this provides us with an explicit algorithm for

constructing the reciprocal lattice. Let −→a1 , −→a2 and −→a3 be a set of primitive trans-

lation vectors for the direct lattice. Then it can be shown that the reciprocal

lattice can be generated by the following three reciprocal primitive translation

vectors:

−→
b1 = 2π

−→a2 ×−→a3−→a1 · (−→a2 ×−→a3)
−→
b2 = 2π

−→a3 ×−→a1−→a1 · (−→a2 ×−→a3)
−→
b3 = 2π

−→a1 ×−→a2−→a1 · (−→a2 ×−→a3)

(2.7)

To verify that the above set of equations gives a set of primitive vectors for

the reciprocal lattice, one first notes that the
−→
bi vectors satisfy:

−→
bi · −→aj = 2πδij (2.8)

where δij = 0 if i �= j, or δij = 1 if i = j. Since the set of
−→
bi vectors form a

complete basis set in reciprocal space, any vector
−→
k in reciprocal space can be
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written as a linear combination:

−→
k = k1

−→
b1 + k2

−→
b2 + k3

−→
b3 (2.9)

If
−→
R is a Bravais lattice vector, then:

−→
R = n1

−→a1 + n2
−→a2 + n3

−→a3 (2.10)

where the ni coefficients are integers. Hence the dot product of
−→
k with

−→
R is

given by:

−→
k · −→R = 2π (k1n1 + k2n2 + k3n3) (2.11)

where we have made use of the results of Eq. (2.8). For ei
−→
k ·−→R to be unity

for all
−→
R as required for a reciprocal lattice,

−→
k · −→R must be 2π times an integer

for any choices of the integers ni. This requires the coefficients ki to be integers.

Thus the condition that
−→
K be a reciprocal lattice vector is satisfied by just those

vectors for which:

−→
K = k1

−→
b1 + k2

−→
b2 + k3

−→
b3 (2.12)

where the ki coefficients are integers. This demonstrates that the reciprocal

lattice is a Bravais lattice and that the
−→
bi vectors can be taken as the reciprocal

primitive translation vectors. Since the reciprocal lattice is itself a Bravais lattice,

one can in theory construct its reciprocal, but this turns out to be nothing but

the original direct lattice. A further important property of reciprocal lattices is

that, if v is the volume of a primitive unit cell in the direct lattice, then the
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primitive cell of the reciprocal lattice has a volume of (2π)3 /v. Some important

examples of reciprocal lattices are:

1. Simple Cubic Bravais lattice, with cubic unit cell of side a, has as its recip-

rocal a simple cubic lattice with cubic unit cell of side 2π/a.

2. The fcc Bravais lattice with a cubic conventional unit cell of side a has as

its reciprocal a bcc lattice with cubic conventional unit cell of side 4π/a

3. The bcc lattice with cubic conventional unit cell of side a has as its reciprocal

lattice a fcc lattice with cubic conventional unit cell of side 4π/a

There is a close relation between reciprocal lattice vectors and planes of points

in the direct lattice. Given a particular Bravais lattice, a lattice plane is defined

to be any plane containing at least three non-collinear Bravais lattice points. By

a family of lattice planes, we mean a set of parallel, equally spaced lattice planes,

which together contain all the points of the three-dimensional Bravais lattice.

Any lattice plane is member of such a family. The reciprocal lattice provides

a very simple way to classify all possible families of lattice planes through the

following theorem: for any family of lattice planes separated by a distance d,

there are reciprocal lattice vectors perpendicular to the planes, the shortest of

which have a length of 2π/d. Conversely, for any reciprocal lattice vector
−→
K ,

there is a family of lattice planes normal to
−→
K and separated by a distance d,

where 2π/d is the length of the shortest reciprocal lattice vector parallel to
−→
K .

The correspondence between reciprocal lattice vectors and families of lattice

planes is connected to the Miller index notation for the lattice plane. It turns

out in fact that the Miller indices of a family of lattice planes are the coordinates
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of the shortest reciprocal lattice vector normal to that plane with respect to a

set of reciprocal primitive translation vectors. Thus a plane with Miller indices

h, k, l is normal to the reciprocal lattice vector h
−→
b1 + k

−→
b2 + l

−→
b3 , and this vector

is of length 2π/d.

2.2 X-ray diffraction

2.2.1 Introduction to crystal structure determination

In diffraction, or light scattering, studies, we usually keep the wavelength of

light fixed and measure the variation in intensity with direction as a result o

the scattering process. From these measurements it is possible to get structural

information about the sample like bond length, bond angles and torsion angles,

and hence obtain a complete geometrical description of the crystal structure.

This technique is known as crystal structure determination. Xrays are the perfect

candidates for resolving atoms and molecules in crystal structures through light

diffraction due to the similarity between their characteristic wavelength and the

typical interatomic spacings found in crystalline solids, both of which are of the

order of a few angstroms (10−10 m) in size.

The major drawback of the technique of Xray Diffraction (XRD) is that no

lens mechanism exists to physically recombine the diffracted rays to create the

realspace image of the crystal structure, as in a normal optical microscope. This

procedure therefore has to be performed mathematically through Fourier Trans-

form techniques. One very important consequence of this limitation is that some

of the information in the scattered X-rays is lost. When the X-ray diffraction
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pattern is recorded, the individual scattered wave amplitudes are retained as rel-

ative intensities 1, but the relative phases are lost. This makes the mathematical

reconstruction stage to find the real image of the crystal structure via Fourier

Transform much less straightforward. This is known as the phase problem, and

there are methods to circumvent it.

The object studied in XRD experiments is typically a small crystalline sample

in the form of a singlecrystal 2. In a single crystal, all the unit cells of the crystal

periodic lattice are aligned in the same orientation with longrange three dimen-

sional order and hence scatter cooperatively to give a clear pattern of discrete

diffracted beams. When the method of crystal structure determination is success-

ful, it provides an image of the crystal structure. More precisely, it locates the

components of the material which interact with the incident X-rays and scatter

them. These are the atomic electrons in the atom. In particular, the picture that

results is of a time-averaged (with respect to thermal motion) electron density,

with concentration of electron density corresponding to atoms. We shall now see

how the distribution of X-rays scattered by a rigid, periodic array of ions in the

crystal structure reveals the locations of the ions within the structure. There

are two equivalent ways to view the scattering of X-rays by a perfect periodic

structure, due to Bragg and Von Laue, both of which are widely used.

2.2.2 The Bragg formulation of X-ray diffraction

The conditions for constructive interference between Xrays scattered from ad-

joining parallel lattice planes in a perfectly periodic structure of Bravais lattice

1The intensity is proportional to the square of the amplitude.
2A single molecule would be impossible to hold in the Xray beam for the duration of the

experiment and would give an immeasurably weak scattering pattern
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points are dictated by Braggs law, given by:

nλ = 2d sin θ (2.13)

where, as shown in figure 2.9, θ is the angle between the incident Xray beam

and the family of parallel lattice planes, d the spacing between two neighbouring

planes, λ the wavelength of radiation and n is known as the order of diffraction

for the given family of lattice planes. Whenever equation (2.13) is satisfied for

a given wavelength and incident direction, intense peaks of scattered radiation

known as Bragg peaks are observed on the diffraction pattern. Reflections are

possible in general for any of the infinitely many ways of sectioning the lattice

into planes. The overall diffraction pattern of a regular single crystal therefore

consists in a series of discrete diffraction peaks (or diffraction spots) arranged in a

regular geometrical fashion in reciprocal (Fourier) space, each spot corresponding

to an individual scattered Xray beam travelling in a definite direction from the

crystal.

2.2.3 The Von Laue formulation of X-ray diffraction

The Von Laue approach differs from the Bragg approach in that no particular

sectioning of the crystal into lattice planes is singled out. Instead one regards

the crystal structure as composed of identical microscopic objects (set of ions or

atoms) placed at the sites R of a Bravais lattice, each of which can re-radiate

the incident radiation in all directions. Sharp peaks will be observed only in

directions and at wavelengths for which the rays scattered from all lattice points

interfere constructively. It can be shown that this condition can be written as:
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Figure 2.9: A Bragg specular reflection from a particular family of lattice planes,
separated by a distance d. Incident and reflected rays are shown for the two
neighbouring planes. The path difference between the two rays is 2dsinθ, yielding
formula (2.13) for constructive interference.

e
i
(−→
k′−−→k

)
·−→R

= 1 (2.14)

for all Bravais lattice vectors
−→
R , where

−→
k is the incident and

−→
k′ the scattered

wavevectors. Comparing this condition with the definition of reciprocal lattice of

Eq. (2.6), we arrive at the Laue condition that constructive interference between

all scattered rays from all lattice points (Laue diffraction peak) will occur provided

that the change in wavevector upon scattering,
−→
K =

−→
k′ − −→k , is a vector of the

reciprocal lattice.

It is sometimes convenient to have an alternative formulation of the Laue

condition, stated entirely in terms of the incident wavevector
−→
k . For this we need

to combine the above Laue condition with the condition for elastic scattering, that
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is that
−→
k and

−→
k′ have the same magnitude. This yields the following condition

for a Laue diffraction peak to appear:

−→
k · K̂ =

1

2
K (2.15)

This means that the component of the incident wavevector
−→
k along the recip-

rocal lattice vector
−→
K must be half the length of

−→
K . Thus an incident wavevector

−→
k will satisfy the Laue condition for constructive interference between all scat-

tered rays from all lattice points and give rise to a Laue diffraction peak if an only

if the tip of the vector lies in a plane that is the perpendicular bisector of a line

joining the origin of k-space to a reciprocal lattice point
−→
K . Such k-space planes

are called Bragg planes, each of which is associated with a particular diffraction

peak. These planes are parallel to the family of direct lattice planes responsible

for the diffraction peak in the Bragg formulation. Thus the connection between

Bragg and Laue conditions for diffraction peaks is the following: a Laue diffrac-

tion peak corresponding to a change in wavevector given by the reciprocal lattice

vector
−→
K corresponds to a Bragg reflection from the family of direct lattice planes

perpendicular to
−→
K . The order n of the Bragg reflection is just the length of

−→
K

divided by the length of the shortest reciprocal lattice vector parallel to
−→
K ,
−→
Ko.

Hence, to summarise, for a Bravais lattice each diffraction peak corresponds to

a family of parallel lattice planes in the Bravais lattice (identified by Miller indices

hkl), or equivalently to each possible reciprocal lattice vector. The connection

between the two conditions for diffraction is expressed by the Miller indices: the

Miller indices of a family of lattice planes are the coordinates of the shortest

reciprocal lattice vector normal to that plane. In particular, the n-th order peak
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from the plane family (hkl) corresponds to the reciprocal lattice vector
−→
K =

n
−→
Ko = nh

−→
b1 +nk

−→
b2 +nl

−→
b3 and is therefore associated with Miller indices n (hkl).

Hence each diffraction peak in the diffraction pattern, including different orders

from the same plane family, is associated with a distinct reciprocal lattice point

and hence a distinct set of Miller indices hkl. The origin of the diffraction pattern

has therefore always indices h = 0, k = 0, l = 0.

Since the reciprocal lattice associated with a given Bravais lattice is far more

easily visualised than the set of all possible planes into which the Bravais lattice

can be resolved, the Laue condition for diffraction peaks is more simple to work

with than the Bragg condition. According to the Laue formulation, an incident

wave vector
−→
k will lead to a diffraction peak if and only if the tip of the wave

vector lies on a k-space Bragg plane. Since the set of all Bragg planes is discrete,

the Bragg planes together don’t fill all of three-dimensional k-space, and in general

the tip of
−→
k will not lie on a Bragg plane. Thus for a fixed incident wave vector

−→
k , that is for a fixed X-ray wavelength and fixed incident direction relative to

the crystal axes, there will be in general no diffraction peaks. If one wishes to

search experimentally for Bragg peaks the constraint of fixed
−→
k must therefore

be relaxed, either by varying the magnitude of
−→
k (i.e. varying the wavelength of

the incident beam) or varying its direction (in practice, varying the orientation

of the crystal with respect to the incident direction).
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2.2.4 The intensities of the diffracted waves and their re-

lation to the crystal structure

So far we have been discussing the appearance of a diffraction pattern purely in

terms of constructive interference between waves scattered by a periodic array

of lattice points (the Bravais lattice), and therefore looking only at the relative

phases of the waves diffracted by the crystal and using Bragg/Laue laws. This

is good in predicting the points where constructive occurs and therefore where

diffraction spots should occur in the diffraction pattern, that is to explain the

overall geometry and symmetry of the diffraction pattern. However, considering

only the underlying Bravais lattice of the crystal tells us nothing about the relative

intensities of the diffraction spots. To do that we need to look at the atom

composition of the basis associated with each lattice point, and hence at the full

crystal structure. In a real crystal structure, with a molecular basis associated

with each Bravais lattice point, the cloud of electrons surrounding each atom in

the structure is the physical component that interacts with Xrays and gives rise

to scattering. As a result, the diffraction spots will exhibit a varying level of

intensity. This intensity is given by the direct Fourier Transform (FT) of the

electron density distribution in a unit cell 1 of the realspace crystal structure:

F (hkl) =

∫
cell

ρ (xyz) exp
[
i
(−→
k · −→r

)]
dV (2.16)

As explained before, each diffraction spot is associated with a reciprocal lattice

vector
−→
K and its Miller indices hkl, so that the reciprocal variable k can in fact

1In practice, a single crystal contains millions of identical unit cells which scatter coopera-
tively, so that all diffraction intensities are scaled by the same factor
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be restricted to a reciprocal lattice point of the form
−→
K = h

−→
b1 + k

−→
b2 + l

−→
b3 . The

exponent in the FT can therefore be rewritten in an explicit form, using also the

expression for the atomic coordinates for position within the unit cell in terms of

the primitive vectors of the real Bravais lattice −→r = x−→a1 + y−→a2 + z−→a3 :

−→
K · −→r =

(
h
−→
b1 + k

−→
b2 + l

−→
b3

)
· (x−→a1 + y−→a2 + z−→a3) = 2π (hx+ ky + lz) (2.17)

The forward FT therefore is:

F (hkl) =

∫
cell

ρ (xyz) exp [2πi (hx+ ky + lz)] dV (2.18)

where F (hkl) = |F (hkl)| exp [iφ (hkl)] is the structure factor of the wave

diffracted in the direction hkl, which comprises information about both the phase

φ (hkl) and the amplitude |F (hkl)| of the reflection 1. ρ (xyz) is the electron

density at the position xyz in the unit cell. The structure factor (amplitude and

phase) for reflection hkl is therefore given by taking the value of the electron den-

sity of the real crystal structure at each point in the unit cell ρ (xyz), multiplying

it by the complex number exp [2πi (hx+ ky + lz)], and integrating these values

over the whole unit cell volume. Positions in the unit cell are measured from

one corner (the origin) of the unit cell and the atomic coordinates x, y, z are in

fractions of the corresponding crystal axes a, b, c. A physical interpretation can

be given to this process of FT in terms of adding single diffracted waves together

with their correct relative phases to get the total diffracted wave in one direction.

Expressing the continuous electron distribution in terms of a more convenient

1Amplitude and intensity are related by I (hkl) ∝ |F (hkl)|2
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form involving a finite sum over discrete atoms in the unit cell, this relation can

be rewritten as the following discrete Fourier Transform:

F (hkl) =
∑
j

Fj (hkl) =
∑
j

fj (θ) exp [2πi (hxj + kyj + lzj)] (2.19)

where the sum is over all the waves diffracted in the direction hkl by the

individual atoms at position xj, yj, zj in the unit cell, taking into account the

relative phase differences. The summation is made over all the atoms forming

the basis associated with one lattice point. The above equation therefore rep-

resents the combination of many waves each scattered by an individual atom in

the unit cell, added with their correct relative amplitudes and phases to give one

total resultant diffracted wave in each direction. The intensity of radiation in a

given diffraction spot will depend on the extent to which the rays scattered from

these atoms interfere constructively with one another. In some directions, com-

plete destructive interference occurs resulting in zerointensity systematic absences

at positions where diffraction spots would be expected from purely geometrical

considerations. fj (θ) is the atomic form factor of the j-th atom describing its

scattering power, and in particular the variation of scattered intensity with angle

θ away from the forward direction. The atomic form factor is measured in units

of electrons, with f(0), the form factor for zero deflection, being equal to the

atomic number Z of the atom. This reflects the fact that X-rays interact with

crystals through the atomic electrons and therefore the higher the Z of the atom,

the higher the strength of the interaction. Hence for a given direction hkl the

amplitude of the diffracted wave depends only on the type of atom, while the
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phase depends on the positions of the atoms in the unit cell.

The resulting observed intensities in the diffraction pattern hold all the avail-

able information about the position of the atoms in the unit cell of the crystal

structure. This can be seen by reversing the FT relation between the electron

density in the unit cell and the diffracted waves expressed in equation (2.18):

ρ (xyz) =
1

V

∑
hkl

|F (hkl)| exp [iφ (hkl)] exp [−2πi (hx+ ky + lz)] (2.20)

where the sum is performed over all the discrete diffraction spots hkl in the

pattern. The summation must be carried out for many different atomic coor-

dinates x, y, z in order to show the variation of the electron density in the unit

cell and hence to locate the atoms where the electron density is concentrated in

peaks. While the diffraction amplitudes |F (hkl)| and the relative phase shift ap-

propriate to each geometrical position in the unit cell exp [−2πi (hx+ ky + lz)]

are known quantities, the diffraction pattern holds no information about the in-

trinsic phases φ (hkl) of each reflection, since all diffraction spots are recorded in

the same observation plane with no information on their order of arrival. Without

this information the image of the electron density ρ (xyz) cannot be reconstructed

from the diffraction pattern. This is the so-called phase problem mentioned ear-

lier.

In summary, the process of crystal structure determination occurs as follows:

we record the diffraction pattern from a crystal. Measurement of the diffraction

pattern geometry and symmetry tells us the unit cell geometry and gives us some

information about the symmetry of arrangement of the molecules in the unit
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cell. Then from the individual intensities of the diffraction patten we work out

the positions of the atoms in the unit cell, adding together the individual waves

with their correct relative amplitudes and phases. And here we encounter the

phase problem, the fact that the measured diffraction pattern provides directly

only the amplitudes and not the required phases, without which the FT cannot

be made to find the real image of the crystal structure. This phase problem

can be circumvented via sophisticated mathematical and statistical experimental

techniques, whose description however lies beyond the scope of this Thesis.

2.2.5 Systematic absences and the diffraction pattern of

the cubic-diamond crystal structure

According to Laue’s law, reflections in the diffraction pattern of a Bravais lattice

can occur for all integer hkl combinations. When we consider crystal structures

however, things get more complicated because the presence of atoms affects the

relative intensities of diffraction spots as explained in the previous section. It

turns out that for some arrangements of atoms in the crystal structure, certain

diffraction spots corresponding to perfectly good reciprocal lattice vectors
−→
K

disappear. This gives rise to so-called systematic absences in the form of hkl

diffraction spots with zero intensity. The indices of systematic absences can

be understood in terms of Eq. (2.19) for calculating the structure factor. If,

as a result of this addition of waves diffracted by the atoms in the unit cell

we have zero intensity at a spot hkl (structure factor F (hkl) = 0, then we

have a systematic absence. This occurs when the atoms in the unit cell are so

arranged that there is a complete destructive interference among all waves in the
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hkl direction in question. Exactly which combinations of hkl are allowed in the

diffraction pattern, and hence the set of systematic absences, is a property of the

space group of the crystal structure, since this destructive interference is a result

of the symmetry properties of the crystal structure

Consider for example this very simple crystal structure: a simple cubic Bravais

lattice with a two-atom monatonic basis at positions (0, 0, 0) and (1/2, 1/2, 1/2)

inside the unit cell. This configuration is equivalent to a bcc Bravais lattice

considered in its conventional two-lattice points unit cell. Since we are considering

a monatonic crystal structure, atomic form factors can be ignored, and only their

relative phase will determine the appearance of missing orders. Therefore to

predict missing orders we can take the structure factor to be simply:

F (hkl) =
∑
j

exp [2πi (hxj + kyj + lzj)] (2.21)

Hence, given the two atomic positions, the structure factor associated with

each Bragg reflection is:

F (hkl) =
∑
j

exp [2πi (hxj + kyj + lzj)] = 1+exp (πi (h+ k + l)) = 1+(−1)h+k+l

(2.22)

Therefore F (hkl) is zero if h + k + l is odd. This represents the systematic

absence for this crystal structure.

As a second example, consider a crystal structure in the form of a simple cubic

Bravais lattice with a two-point monoatomic basis at atomic positions (1/2, 0, 1/2)

and (0, 1/2, 1/2). This is equivalent to a fcc Bravais lattice. The structure factor
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in this case is given by:

F (hkl) =
∑
j

exp [2πi (hxj + kyj + lzj)] = exp [πi (h+ l)]+exp [πi (k + l)] = (−1)h+l+(−1)k+l

(2.23)

Hence the systematic absences occur if h, k, l are not all even or all odd.

Finally, we consider the case of the monoatomic cubic diamond crystal struc-

ture, in which elements such as carbon, silicon, germanium or tin crystallise. This

is not a Bravais lattice and must therefore be described as a lattice with a basis.

The underlying Bravais lattice is fcc, and the two atom basis lies at atomic po-

sitions 0, 0, 0 and 1/4, 1/4, 1/4 relative to the conventional eight-atom unit cell.

The structure factor consequently is:

F (hkl) =
∑
j

exp [2πi (hxj + kyj + lzj)] = 1 + exp
[
i
π

2
(h+ k + l)

]
(2.24)

This time we take the square of the above expression for convenience:

F 2 (hkl) = F (hkl)F ∗ (hkl) = 2
[
1 + cos

(π
2
(h+ k + l)

)]
(2.25)

The above structure factor also applies to the β-Sn high pressure phase con-

sidered in this Thesis, since the relative atomic positions of the two-atom basis

there are the same. The selection rules that determine the occurrence of sys-

tematic absences are therefore that h + k + l be twice an odd number. To this

selection rule, we must also superimpose that of the underlying fcc Bravais lattice

that the structure factor falls to zero when h, k, l are mixed even or odd.
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2.3 Theory of elasticity

2.3.1 Introduction

The theory describing the mechanical behaviour of elastic bodies under deforma-

tion is vast and mathematically very sophisticated. Only the essential elements

will be introduced within the scope of this brief introduction. For a complete,

rigorous and modern description of the subject, the reader is referred to the mono-

graph by Lur’ie , which builds upon the classical work by Love, Timoshenko and

Solkonikoff. Alternatively, there exists many textbooks which offer a more intro-

ductory treatment ?????.

Elasticity is an elegant theory that deals with the determination of the stress,

strain and displacement distribution in an elastic solid under the influence of ex-

ternal forces. Following the usual assumptions of linear, small-deformation the-

ory, the formulation establishes a mathematical model that allows solutions to

problems that have applications in many engineering and scientific fields. These

include Civil engineering applications, which normally consist in the analysis of

stresses and deflections in structures such as rods, beams, plates and shells; appli-

cations in geomechanics, which involve the stresses in materials such as soil, rock,

concrete and asphalt; Mechanical engineering, which uses elasticity in numerous

problems in the analysis and design of machine elements involving general stress

analysis, contact stresses, thermal stress analysis, fracture mechanics and fatigue;

Material engineering, which uses elasticity to determine the stress fields in crys-

talline solids, around dislocations , and in materials with microstructure; and

finally there are applications in aeronautical and aerospace engineering , which

include stress, fracture and fatigue analysis in aereostructures. The subject also
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provides the foundations for more advanced work in inelastic material behaviour,

including plasticity and viscoelasticity, and in the analysis of finite, non-linear

deformations.

The concept of elastic force-deformation relation was first proposed by Robert

Hooke in 1678. However, the major formulation of the mathematical theory of

elasticity was not developed until the 19th century: in 1821 Navier presented his

investigations on the general equations of equilibrium; he was quickly followed by

Cauchy, who studied the basic elasticity equations and developed the notation

of stress at a point. A long list of prominent scientists and mathematicians

continued development of the theory, including Bernoulli, Lord Kelvin, Poisson,

Lame’, Green, Airy, Rayleigh and Love.

2.3.2 Deformations and Strains

As a result of applied external loadings, elastic solids will change shape and thence

deform, and these deformations can be quantified by knowing the displacements

of material points in the body. The continuum hypothesis establishes a displace-

ment field at all points within the elastic solid. Using appropriate geometry, par-

ticular measures of deformation can be constructed leading to the development

of the strain tensor. As appropriate for linear elasticity, the relation between

displacement and strain will be developed in this section under the conditions

of small deformations. For finite or large deformation theory, the undeformed

and deformed configurations can be significantly different leading to the so-called

Lagrangian and Eulerian descriptions, which however lie beyond the scope of this

introduction.
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Typically when elastic solids deform under the effect of some external load, the

deformation varies from point to point and is thus said to be non-homogeneous.

In particular, elements within the material undergo extensional and shearing de-

formation. An elastic solid is thus said to be deformed or strained when the

relative displacements between points in the body are changed. This contrasts

with rigid-body motion where the distance between the points remains the same.

Let us define the displacement vectors of two pairs of points between the unde-

formed and deformed configurations of a generic solid as −→uo and −→u respectively.

Since the points in each of the deformed and undeformed configurations are neigh-

bouring and are therefore separated by a small distance
−→
r′ and −→r respectively,

we can use a Taylor expansion to express the components of −→u as:

u = uo +
∂u

∂x
rx +

∂u

∂y
ry +

∂u

∂z
rz

v = vo +
∂v

∂x
rx +

∂v

∂y
ry +

∂v

∂z
rz

w = wo +
∂w

∂x
rx +

∂w

∂y
ry +

∂w

∂z
rz

(2.26)

The change in the relative position vector −→r can be written as:

Δr =
−→
r′ −−→r = −→u −−→uo (2.27)

and using Eq. (2.26) gives:

Δrx =
∂u

∂x
rx +

∂u

∂y
ry +

∂u

∂z
rz

Δry =
∂v

∂x
rx +

∂v

∂y
ry +

∂v

∂z
rz

Δrz =
∂w

∂x
rx +

∂w

∂y
ry +

∂w

∂z
rz

(2.28)
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or in index notation:

Δri = ui,jrj (2.29)

The tensor ui,j is called the displacement gradient tensor, and may be ex-

pressed as:

ui,j =

⎛⎜⎜⎜⎜⎝
∂u
∂x

∂u
∂y

∂u
∂z

∂v
∂x

∂v
∂y

∂v
∂z

∂w
∂x

∂w
∂y

∂w
∂z

⎞⎟⎟⎟⎟⎠ (2.30)

This tensor can be decomposed into symmetric and antisymmetric parts as:

ui,j = eij + ωij (2.31)

where

eij =
1

2
(ui,j + uj,i)

ωij =
1

2
(ui,j − uj,i)

(2.32)

The tensor eij is called the strain tensor, while ωij is referred to as the rotation

tensor. Hence for small deformation theory the change in the relative position

vector between neighbouring points can be expressed in terms of a sum of strain

and rotation components. This is because we are considering a general displace-

ment field, so that the results include both strain deformation and rigid-body

motion. We now wish to establish a more geometrical interpretation of these

results. Consider the common deformational behaviour of a rectangular element

as shown in Fig. 2.10. The usual types of motion include rigid-body rotation
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Figure 2.10: Possible types of deformation of a rectangular element.

and extensional and shearing deformation as illustrated. Rigid-body motion does

not contribute to the strain field, and thus also does not affect the stresses. We

therefore focus our study primarily on the extensional and shearing deformation.

Fig. 2.11 illustrates the two-dimensional deformation of a rectangular ele-

ment with original dimensions dx by dy. After deformation, the element takes

a rhombus form as shown in the dotted outline. The displacements of various

corner reference points are indicated in the figure. Reference point A is taken at

location (x, y), and the displacement components of this point are thus u(x, y)

and v(x, y), where u and v are the displacements fields along x and y respectively.

The corresponding displacements of point B are u(x+dx, y) and v(x+dx, y), and

the displacements of the other corner points are defined in an analogous manner.

According to small deformation theory, u(x+ dx, y) ≈ u(x, y)+ (∂u/∂x) dx, with

similar expansions for all other terms. The normal or extensional strain compo-
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Figure 2.11: Two-dimensional geometric strain deformation.

nent in a direction n is defined as the change in length per unit length of fibres

oriented in the n direction. Normal strain is positive if fibres increase in length

and negative if the fibre is shortened. In Fig. 2.11, the normal strain in the x

direction can thus be defined by:

εx =
A′B′ − AB

AB
(2.33)

From the geometry of Fig. 2.11:

A′B′ =

√(
dx+

∂u

∂x
dx

)2

+

(
∂v

∂x
dx

)2

=

√
1 + 2

∂u

∂x
+

(
∂u

∂x

)2

+

(
∂v

∂x

)2

dx ≈
(
1 +

∂u

∂x

)
dx

(2.34)

Using these results amd the fact that AB = dx, the normal strain in the

x-direction reduces to:
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εx =
∂u

∂x
(2.35)

In a similar fashion, the normal strain in the y-direction becomes:

εy =
∂v

∂y
(2.36)

A second type of strain is shearing deformation, which involves angle changes.

Shear strain is defined as the change in angle between two originally orthogonal

directions in the continuum material. Measured in radians, shear strain is positive

if the right angle between the positive directions of the two axes decreases. Thus

the sign of the shear strain depends on the coordinate system. In Fig. 2.11, the

shear strain with respect to the x and y directions can be defined as:

γxy = α + β (2.37)

For small deformations, α ≈ tanα and β ≈ tanβ, and the shear strain can

then be expressed as:

γxy =
∂v
∂x
dx

dx+ ∂u
∂x
dx

+

∂u
∂y
dy

dy + ∂v
∂y
dy

=
∂u

∂y
+

∂v

∂x
(2.38)

By simple intercahnge of x and y and u and v, it is apparent that γxy = γyx.

By considering similar behaviours in the y− z and x− z planes, these results can

be easily extended to the general three-dimensional case, giving the results:

εx =
∂u

∂x
, εy =

∂v

∂y
, εz =

∂w

∂z

γxy =
∂u

∂y
+

∂v

∂x
, γyz =

∂v

∂z
+

∂w

∂y
, γzx =

∂w

∂x
+

∂u

∂z

(2.39)
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Thus, we define three normal and three shearing strain components leading to

a total of six independent components that completely describe small deformation

theory. This set of equations is normally referred to as the strain-displacement

relations. However,tensorial elasticity theory prefers to use the formulation of

the strain tensor eij given by Eq. (2.32). This represents only a minor change

because the normal strains are identical and shearing strains differ by a factor of

one-half. Therefore, using the strain tensor eij, the strain-displacement relations

can be expressed in component form as:

ex =
∂u

∂x
, ey =

∂v

∂y
, ez =

∂w

∂z

exy =
1

2

(
∂u

∂y
+

∂v

∂x

)
, eyz =

1

2

(
∂v

∂z
+

∂w

∂y

)
, ezx =

1

2

(
∂w

∂x
+

∂u

∂z

)
(2.40)

Using the more compact tensor notation, these relations are written as:

eij =
1

2
(ui,j + uj,i) (2.41)

while in direct vector/matrix notation the form reads:

e =
1

2

[
∇u+ (∇u)T

]
(2.42)

where e is the strain matrix and ∇u is the displacement gradient matrix. The

strain is a symmetric second-order tensor (eij = eji) and is commonly written in

matrix format:
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e =

⎛⎜⎜⎜⎜⎝
ex exy exz

exy ey eyz

exz eyz ez

⎞⎟⎟⎟⎟⎠ (2.43)

It follows that because the strain is a symmetric second-order tensor, we

can identify and determine its principal axes and values (the eigenvectors and

eigenvalues). According to this theory, for any given strain tensor we can establish

the principal value problem and solve the characteristic equation to explicitly

determine the principal values and directions. The general characteristic equation

for the strain tensor can be written as:

det [eij − eδij] = −e3 + ϑ1e
2 − ϑ2e+ ϑ3 = 0 (2.44)

where e is the principal strain and the fundamental invariants of the strain

tensor can be expressed in terms of the three principal strains e1, e2, e3 (the eigen-

values of the strain tensor) as:

ϑ1 = e1 + e2 + e3

ϑ2 = e1e2 + e2e3 + e3e1

ϑ3 = e1e2e3

(2.45)

The first invariant ϑ1 = ϑ is normally called the cubical dilatation, because it

is related to the change in volume of material elements. The strain matrix in the

principal coordinate system takes the special diagonal form:
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eij =

⎛⎜⎜⎜⎜⎝
e1 0 0

0 e2 0

0 0 e3

⎞⎟⎟⎟⎟⎠ (2.46)

Notice that for this principal coordinate system, the deformation does not

produce any shearing and thus is only extensional. Therefore, a rectangular

element oriented along principal axes of strain will retain its orthogonal shape

and undergo only extensional deformation of its sides.

In particular applications it is convenient to decompose the strain tensor into

two parts called spherical and deviatoric strain tensors. The spherical strain is

defined by

ẽij =
1

3
ekkδij =

1

3
ϑδij (2.47)

while the deviatoric strain is specified as:

êij = eij − 1

3
ekkδij (2.48)

Note that the total strain is then simply the sum

eij = ẽij + êij (2.49)

The spherical strain represents only volumetric deformation and is an isotropic

tensor, being the same in all coordinate systems. The deviatoric strain tensor

then accounts for changes in shape of material elements. It can be shown that

the principal directions of the deviatoric strain are the same as those of the strain
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tensor.

2.3.3 Stress and equilibrium

When a structure is subjected to applied external loadings, internal forces are

induced inside the body. Following the philosophy of continuum mechanics, these

internal forces are distributed continuously within the solid. In order to study

such forces, it is convenient to categorize them into two major groups, commonly

referred to as body forces and surface forces.

Body forces are proportional to the bodys mass and are reacted with an

agent outside of the body. By using continuum mechanics principles, a body

force density (force per unit volume) F (x) can be defined such that the total

resultant body force of an entire solid can be written as a volume integral over

the body:

FR =

∫∫∫
V

F (x)dV (2.50)

Surface forces always act on a surface and result from physical contact with

another body. Again, the resultant surface force over the entire surface S can be

expressed as the integral of a surface force density function T n(x):

FS =

∫∫
S

T n(x)dS (2.51)

The surface force density is normally referred to as the traction vector. In or-

der to quantify the nature of the internal distribution of forces within a continuum

solid, consider a general body subject to arbitrary (concentrated and distributed)

external loadings. To investigate the internal forces, a section is made through
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the body. On this section consider a small area ΔA with unit normal vector −→n .

The resultant surface force acting on ΔA is defined by ΔF . The stress or traction

vector is defined by:

−→
T n (−→x ,−→n ) = lim

ΔA→0

Δ
−→
F

ΔA
(2.52)

Notice that the traction vector depends on both the spatial location and the

unit normal vector to the surface under study. Thus, even though we may be

investigating the same point, the traction vector still varies as a function of the

orientation of the surface normal. Because the traction is defined as force per

unit area, the total surface force is determined through integration according to

Eq. (2.51). Consider now the special case in which ΔA coincides with each of the

three coordinate planes with the unit normal vectors pointing along the positive

coordinate axes. This concept is shown in Fig. 3.4, where the three coordinate

surfaces for ΔA partition off a cube of material. For this case, the traction vector

on each face can be written as

−→
T n (−→x ,−→n = −→e1 ) = σx

−→e1 + τxy
−→e2 + τxz

−→e3
−→
T n (−→x ,−→n = −→e2 ) = τyx

−→e1 + σy
−→e2 + τyz

−→e3
−→
T n (−→x ,−→n = −→e3 ) = τzx

−→e1 + τzy
−→e2 + σ2

−→e3

(2.53)

where −→e1 ,−→e2 ,−→e3 are the unit vectors along each coordinate direction, and

the nine quantities {σx, σy, σz, τxy, τyx, τyz, τzy, τzx, τxz} are the components of the

traction vector on each of three coordinate planes as illustrated. These nine

components are called the stress components, with σx, σy, σz referred to as normal

stresses and τxy, τyx, τyz, τzy, τzx, τxz called the shearing stresses. The components

86



of stress σij are commonly written in matrix format:

σ =

⎛⎜⎜⎜⎜⎝
σx τxy τxz

τyx σy τyz

τzx τzy σz

⎞⎟⎟⎟⎟⎠ (2.54)

and it can be formally shown that the stress is a second-order tensor. The

positive directions of each stress component are illustrated in Fig. ??. Regardless

of the coordinate system, positive normal stress always acts in tension out of the

face, and only one subscript is necessary because it always acts normal to the

surface. The shear stress, however, requires two subscripts, the first representing

the plane of action and the second designating the direction of the stress. Similar

to shear strain, the sign of the shear stress depends on coordinate system orienta-

tion. For example, on a plane with a normal in the positive x direction, positive

τxy acts in the positive y direction. Similar definitions follow for the other shear

stress components.

Consider next the traction vector on an oblique plane with arbitrary orienta-

tion. The unit normal to the surface can be expressed by:

−→n = nx
−→e1 + ny

−→e2 + nz
−→e3 (2.55)

where nx, ny, nz are the direction cosines of the unit vector −→n relative to

the given coordinate system. We now consider the equilibrium of the pyramidal

element interior to the oblique and coordinate planes. Invoking the force balance

between tractions on the oblique and coordinate faces gives:
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Figure 2.12: Components of the stress tensor and of the traction vectors.

−→
T n = nx

−→
T n (−→n = −→e1 ) + ny

−→
T n (−→n = −→e2 ) + nz

−→
T n (−→n = −→e3 ) (2.56)

and by using Eq. (2.53), this can be written as:

−→
T n = (σxnx + τyxny + τzxnz)

−→e1+(τxynx + σyny + τzynz)
−→e2+(τxznx + τyzny + σznz)

−→e3
(2.57)

or in index notation

T n
i = σjinj (2.58)

Based on these previous definitions, the distinction between the traction vec-

tor and stress tensor should be carefully understood. Although each quantity has

the same units of force per unit area, they are fundamentally different since the
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traction is a vector while the stress is a second-order tensor (matrix). Compo-

nents of traction can be defined on any surface, but particular stress components

only exist on coordinate surfaces, as shown in Fig. 3.4 for the Cartesian case.

Clearly, Eq. 2.58 establishes the relation between the two variables, thereby in-

dicating that each traction component can be expressed as a linear combination

of particular stress components.

It can be shown that the stress is a symmetric tensor. Using this fact, we

can identify and determine principal axes and values for the stress (eigenvectors

and eigenvalues of the stress tensor). For any given stress tensor we can establish

the principal value problem and solve the characteristic equation to explicitly

determine the principal values and directions. The general characteristic equation

for the stress tensor becomes:

det [σij − σδij] = −σ3 + I1σ
2 − I2σ + I3 = 0 (2.59)

where σ are the principal stresses and the fundamental invariants of the stress

tensor can be expressed in terms of the three principal stresses σ1, σ2, σ3 as:

I1 = σ1 + σ2 + σ3

I2 = σ1σ2 + σ2σ3 + σ3σ1

I3 = σ1σ2σ3

(2.60)

In the principal coordinate system, the stress matrix takes the special diagonal

form:
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σij =

⎛⎜⎜⎜⎜⎝
σ1 0 0

0 σ2 0

0 0 σ3

⎞⎟⎟⎟⎟⎠ (2.61)

Notice that for the principal coordinate system, all shearing stresses vanish

and thus the state includes only normal stresses. These issues should be compared

to the equivalent comments made for the strain tensor at the end of the previous

section.

As mentioned in our previous discussion on strain, it is often convenient to

decompose the stress into two parts called the spherical and deviatoric stress

tensors. Analogous to relations (2.47) and (2.48), the spherical stress is defined

by:

σ̃ij =
1

3
σkkδij (2.62)

while the deviatoric stress becomes

σ̂ij = σij − 1

3
σkkδij (2.63)

Note that the total stress is then simply the sum

σij = σ̃ij + σ̂ij (2.64)

The spherical stress is an isotropic tensor, being the same in all coordinate

systems. It can also be shown that the principal directions of the deviatoric

stress are the same as those of the stress tensor itself. We next briefly explore a
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couple of particular stress components or combinations that have been defined in

the literature and are commonly used in formulating failure theories related to

inelastic deformation. It has been found that ductile materials normally exhibit

inelastic yielding failures that can be characterized by these particular stresses.

The octahedral normal and shear stresses are defined in terms of the principal

values of stress as:

σoct =
1

3
(σ1 + σ2 + σ3) =

1

3
σkk =

1

3
I1

τoct =
1

3

[
(σ1 − σ2)

2 + (σ2 − σ3)
2 + (σ3 − σ1)

2]1/2 = 1

3

(
2I21 − 6I2

)1/2 (2.65)

Another specially defined stress is known as the effective or von Mises stress

and is given by the expression:

σvonMises =
1√
2

[
(σ1 − σ2)

2 + (σ2 − σ3)
2 + (σ3 − σ1)

2]1/2 (2.66)

If at some point in the structure, the von Mises stress equals the yield stress,

then the material is considered to be at the failure condition

2.3.4 Linear elastic solids

We now wish to complete our general formulation of the theory of elasticity by

specializing to a particular material model that provides reasonable characteriza-

tion of materials under small deformations. The model is that of a linear elastic

material. This section presents the basics of the linear elastic model that applies

to isotropic materials only. Related theory for anisotropic media is developed in

the next section.
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Relations that characterize the physical properties of materials are called con-

stitutive equations. Our interest here is limited to a special class of solid mate-

rials with loadings resulting from mechanical or thermal effects. The mechani-

cal behaviour of solids is normally defined by constitutive stress-strain relations.

Commonly, these relations express the stress as a function of the strain, strain

rate,strain history, temperature, and material properties. We choose a rather sim-

ple material model called the elastic solid that does not include rate or history

effects. Furthermore, we restrict the constitutive stress-strain law to be linear,

thus leading to a linear elastic solid. Although these assumptions greatly simplify

the model, linear elasticity predictions have shown good agreement with experi-

mental data and have provided useful methods to conduct stress analysis. Many

structural materials including metals, plastics, ceramics, wood, rock, concrete,

and so forth exhibit linear elastic behaviour under small deformations. Exper-

imental testing is commonly employed in order to characterize the mechanical

behaviour of real materials. It is observed experimentally that materials exhibit

an initial stress-strain response for small deformation that is approximately lin-

ear. This is followed by a change to nonlinear behaviour that can lead to large

deformation, finally ending with sample failure. For each material the initial

linear response ends at a point normally referred to as the proportional limit.

Another observation in this initial region is that if the loading is removed, the

sample returns to its original shape and the strain disappears. This characteris-

tic is the primary descriptor of elastic behavior. However, at some point on the

stress-strain curve unloading does not bring the sample back to zero strain and

some permanent plastic deformation results. The point at which this nonelas-

tic behavior begins is called the elastic limit. Although some materials exhibit
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Figure 2.13: Stress-strain curve showing typical yield behaviour. Stress ( σ ) is
shown as a function of strain ( ε ). The positions of the Proportionality limit (2),
Elastic limit (3) and yield point (4) are indicated.

different elastic and proportional limits, many times these values are taken to

be approximately the same. Another demarcation on the stress-strain curve is

referred to as the yield point, defined by the location where large plastic defor-

mation begins. The appearance of a typical stress-strain curve summarising the

positions of the various limiting behaviours is shown in Fig. 2.13

It is therefore concluded that a large variety of real materials exhibit linear

elastic behavior under small deformations. This would lead to a linear constitutive

model for the one-dimensional axial loading case given by the relation σ = Eε,

where E is the slope of the uniaxial stress-strain curve. To construct a general

three-dimensional constitutive law for linear elastic materials, we assume that

each stress component is linearly related to each strain component. This relation

can be cast into a matrix format as
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⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

σx

σy

σz

τxy

τyz

τzx

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎝
C11 . . . C16

...
. . .

...

C61 · · · C66

⎞⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ex

ey

ez

2exy

2eyz

2ezx

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(2.67)

where the coefficients Cij are material parameters and the factors of 2 arise

because of the symmetry of the strain. Note that this relation could also be

expressed by writing the strains as a linear function of the stress components.

Relations (2.67) can also be expressed in standard tensor notation by writing:

σij = Cijklekl (2.68)

where Cijkl is a fourth-order elasticity tensor whose components include all

the material parameters necessary to characterize the material. Based on the

symmetry of the stress and strain tensors, the elasticity tensor must have the

following properties:

Cijkl = Cjikl

Cijkl = Cijlk

(2.69)

In general, the fourth-order tensor Cijkl has 81 components. However, re-

lations (2.69) reduce the number of independent components to 36, and this

provides the required match with form (2.67). It can also be shown that the com-

ponents of Cijkl satisfy the relation Cijkl = Cklij or equivalently Cij = Cji, which
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provides further reduction to 21 independent elastic components. The compo-

nents of Cijkl or equivalently Cij are called elastic moduli and have units of stress

(force/area).

If the material is homogeneous, the elastic behaviour does not vary spatially,

and thus all elastic moduli are constant. For this case, the elasticity formulation is

straightforward, leading to the development of many analytical solutions to prob-

lems of engineering interest. A homogeneous assumption is an appropriate model

for most structural applications, and thus we primarily choose this particular case

for subsequent analysis. Similar to homogeneity, another fundamental material

property is isotropy. This property has to do with differences in material moduli

with respect to orientation. For example, many materials including crystalline

minerals, wood, and fiber-reinforced composites have different elastic moduli in

different directions. Materials such as these are said to be anisotropic. Note that

for most real anisotropic materials there exist particular directions where the

properties are the same. These directions indicate material symmetries. How-

ever, for many engineering materials (most structural metals and many plastics),

the orientation of crystalline and grain microstructure is distributed randomly

so that macroscopic elastic properties are found to be essentially the same in

all directions. Such materials with complete symmetry are called isotropic. As

expected, an anisotropic model complicates the formulation and solution of prob-

lems. We therefore postpone development of such solutions until the next section

and continue our current development under the assumption of isotropic material

behaviour.

The tensorial form (2.68) provides a convenient way to establish the desired

isotropic stress-strain relations. If we assume isotropic behavior, the elasticity
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tensor must be the same under all rotations of the coordinate system. Using the

basic transformation properties for fourth-rank tensors, it can be shown that the

most general form that satisfies this isotropy condition is given by:

Cijkl = αδijδkl + βδikδjl + γδilδjk (2.70)

where α, β, and γ are arbitrary constants. Using the general form (2.70) in

the stress-strain relation (2.68) gives:

σij = λekkδij + 2μeij (2.71)

where we have relabelled particular constants using λ and ν. The elastic

constant λ is called Lamé’s constant, and ν (or alternatively G) is referred to

ad the shear modulus or modulus of rigidity. Eq. (2.71) can be written out in

individual scalar equations as:

σx = λ (ex + ey + ez) + 2μex

σy = λ (ex + ey + ez) + 2μey

σz = λ (ex + ey + ez) + 2μez

τxy = 2μexy

τyz = 2μeyz

τzx = 2μezx

(2.72)

Relations (2.71) or 2.72 are called the generalized Hookes law for linear isotropic

elastic solids. It should be noted that only two independent elastic constants are

needed to describe the behavior of isotropic materials. As shown in the next
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section, additional numbers of elastic moduli are needed in the corresponding

relations for anisotropic materials. The Stress-strain relations of Eq. (2.71) or

2.72 may be inverted to express the strain in terms of the stress. In order to do

this it is convenient to use the index notation form (2.71) and set the two free

indices the same (contraction process) to get:

σkk = (3λ+ 2μ) ekk (2.73)

This relation can be solved for ekk and substituted back into Eq. (2.71) to

get:

eij =
1

2μ

(
σij − λ

3λ+ 2μ
σkkδij

)
(2.74)

which is more commonly written as:

eij =
1 + υ

E
σij − υ

E
σkkδij (2.75)

where E = μ (3λ+ 2μ)/(λ+ μ) and is called the modulus of elasticity or

Youngs modulus, and ν = λ/[2 (λ+ μ)] is referred to as Poissons ratio. The

index notation relation (2.75) may be written out in component (scalar) form,

giving the six equations:
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ex =
1

E
[σx − υ (σy + σz)]

ey =
1

E
[σy − υ (σz + σx)]

ez =
1

E
[σz − υ (σx + σy)]

exy =
1 + υ

E
τxy =

1

2μ
τxy

eyz =
1 + υ

E
τyz =

1

2μ
τyz

ezx =
1 + υ

E
τzx =

1

2μ
τzx

(2.76)

Constitutive form (2.75) or (2.76) again illustrates that only two elastic con-

stants are needed to formulate Hookes law for isotropic materials. By using any

of the isotropic forms of Hookes law, it can be shown that the principal axes of

stress coincide with the principal axes of strain. This result also holds for some

but not all anisotropic materials.

For the isotropic case, the previously defined elastic moduli have simple phys-

ical meaning. These can be determined through investigation of particular states

of stress commonly realized in laboratory materials testing. Consider first the

simple tension test with a sample subjected to tension in the x direction. The

state of stress is closely represented by the one-dimensional field:

σij =

⎛⎜⎜⎜⎜⎝
σ 0 0

0 0 0

0 0 0

⎞⎟⎟⎟⎟⎠ (2.77)

Using this in relation (2.75) gives a corresponding strain field:
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eij =

⎛⎜⎜⎜⎜⎝
σ
E

0 0

0 − υ
E
σ 0

0 0 − υ
E
σ

⎞⎟⎟⎟⎟⎠ (2.78)

Therefore, E = σ/ex and is simply the slope of the stress-strain curve, while

υ = −ey/ex = −ez/ex is the ratio of the transverse strain to the axial strain.

Secondly, we consider a thin-walled cylinder subjected to torsional loading, in

which the state of stress on the surface of the cylindrical sample is given by:

σij =

⎛⎜⎜⎜⎜⎝
0 τ 0

τ 0 0

0 0 0

⎞⎟⎟⎟⎟⎠ (2.79)

Again, by using Hookes law, the corresponding strain field becomes:

eij =

⎛⎜⎜⎜⎜⎝
0 τ/2μ 0

τ/2μ 0 0

0 0 0

⎞⎟⎟⎟⎟⎠ (2.80)

and thus the shear modulus is given by μ = τ/2exy = τ/γxy, and this modulus

is simply the slope of the shear stress-shear strain curve.

The final example is associated with the hydrostatic compression (or tension)

loading of a cubical specimen. The state of stress for this case is given by:

σij =

⎛⎜⎜⎜⎜⎝
−p 0 0

0 −p 0

0 0 −p

⎞⎟⎟⎟⎟⎠ = −pδij (2.81)
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This is an isotropic state of stress and the strains follow from Hookes law:

eij =

⎛⎜⎜⎜⎜⎝
−1−2υ

E
p 0 0

0 −1−2υ
E

p 0

0 0 −1−2υ
E

p

⎞⎟⎟⎟⎟⎠ (2.82)

The dilatation that represents the change in material volume is thus given by

ϑ = ekk = −3 (1− 2υ) p/E, which can be written as:

p = −kϑ (2.83)

where k = E/[3 (1− 2υ)] (alternatively labelled as K) is called the bulk mod-

ulus of elasticity. This additional elastic constant represents the ratio of pressure

to the dilatation, which could be referred to as the volumetric stiffness of the ma-

terial. Notice that as Poissons ratio approaches 0.5, the bulk modulus becomes

unbounded and the material does not undergo any volumetric deformation and

hence is incompressible. This represents the upper limit value of υ, the lower

limit being given by −1. E, μ, k and λ are all subject to the same bounds that

they must be greater than zero.

Our discussion of elastic moduli for isotropic materials has led to the defini-

tion of five constants λ, μ, E, υ, and k. However, only two of these are needed

to characterize the material. Although we have developed a few relationships

between various moduli, many other such relations can also be found. In fact, it

can be shown that all five elastic constants are interrelated, and if any two are

given, the remaining three can be determined by using simple formulae. Results

of these relations are conveniently summarized in Fig. 2.14.
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Figure 2.14: Relations between the five elastic constants λ, μ = G,E, υ, and
k = K in a isotropic linear elastic material. This class of materials has its elastic
properties uniquely determined by any two moduli among these, thus given any
two, any other of the elastic moduli can be calculated according to these formulae.

2.3.5 Anisotropic elasticity

It has long been recognized that deformation behaviour of many materials de-

pends upon orientation, that is, the stress-strain response of a sample taken

from the material in one direction will be different if the sample were taken in

a different direction. The term anisotropic is generally used to describe such

behaviours. Our previous development of the linear elastic stress-strain rela-

tions in the previous section began with the general case of inhomogeneous and

anisotropic behaviour. However, this generality was quickly eliminated, and only

the homogeneous isotropic case was subsequently developed in detail. We now

wish to go back and further investigate the anisotropic homogeneous case.

The directional-dependent behaviours found in anisotropic solids normally
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result from particular microstructural features within the material. Our previous

isotropic model neglected these effects, thus resulting in a material that behaved

the same in all directions. Micro features commonly arise in natural and synthetic

materials in such a way as to produce a stress-strain response with particular

symmetries. This concept is based on the Neumann principle that symmetry in

material microgeometry corresponds to identical symmetry in the constitutive

response. These symmetries generally lead to a reduction in the complexity of

the stress-strain constitutive relation.

From the previous section, the general form of Hookes law was given by:

σij = Cijklekl (2.84)

The fourth-order elasticity tensor Cijkl contains all of the elastic stiffness mod-

uli, and we have previously established the following symmetry properties:

Cijkl = Cjikl = Cijlk = Cklij (2.85)

Relations (2.85) reduce the original 81 independent elastic constants within

Cijkl to a set of 21 elastic moduli for the general case. We shall assume that the

material is homogeneous and thus the moduli are independent of spatial position.

On occasion we may wish to invert Eq. (2.84) and write strain in terms of stress:

eij = Sijklσkl (2.86)

where Sijkl is the elastic compliance tensor, which has identical symmetry

properties as those in relations (2.85). Because of the various preexisting symme-
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tries, stress-strain relations (2.84) and (2.86) contain many superfluous terms and

equations. To avoid these, a convenient contracted notation has been developed,

sometimes referred to as Voigt matrix notation:

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

σx

σy

σz

τyz

τzx

τxy

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎝
C11 . . . C16

...
. . .

...

C61 · · · C66

⎞⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ex

ey

ez

2eyz

2ezx

2exy

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(2.87)

or in compact notation

σi = Cijej (2.88)

Note that the 6× 6 C matrix is symmetric; that is, Cij = Cji, and thus only

21 independent elastic constants exist. A similar scheme can be established for

Eq. (2.86), and a compliance matrix Sij can be defined by:

ei = Sijσj (2.89)

We thus determined that for the general anisotropic case (sometimes referred

to as triclinic material), 21 independent elastic constants are needed to char-

acterize the material response. However, most real materials have some types

of symmetry, which further reduces the required number of independent elastic

moduli. Orientations for which an anisotropic material has the same stress-strain
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response can be determined by coordinate transformation (rotation) theory. In

order to determine various material symmetries, it is more convenient to work in

the noncontracted form. Thus, applying this theory, Hookes law (2.84) can be

expressed in a new coordinate system as:

σ′ij = C ′ijkle
′
kl (2.90)

Now because the stress and strain must transform as second-order tensors:

σ′ij = QikQjlσkl, σij = QkiQljσ
′
kl

e′ij = QikQjlekl, eij = QkiQlje
′
kl

(2.91)

Combining equations (2.90) and (2.91) and using the orthogonality condi-

tions between the transformation tensors Q yields the transformation law for the

elasticity tensor:

C ′ijkl = QimQjnQkpQlqCmnpq (2.92)

If under a specific transformation Q the material response is to be the same,

relation (2.92) reduces to:

C ijkl = QimQjnQkpQlqCmnpq (2.93)

This material symmetry relation will provide a system of equations that allows

reduction in the number of independent elastic moduli. We now consider some

specific cases of practical interest. We first investigate the case of a material with

a plane of symmetry. Such a medium is commonly referred to as a monoclinic
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material. We consider the case of symmetry with respect to the x, y-plane. For

this particular symmetry, the required transformation is simply a mirror reflection

about the x, y-plane and is given by:

Qij =

⎛⎜⎜⎜⎜⎝
1 0 0

0 1 0

0 0 −1

⎞⎟⎟⎟⎟⎠ (2.94)

Using this specific transformation in relation (2.93) gives Cijkl = −Cijkl if the

index 3 appears an odd number of times, and thus these particular moduli would

have to vanish. Thus, the elasticity matrix takes the form:

Cij =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

C11 C12

. C22

C13 0

C23 0

0 C16

0 C26

. .

. .

C33 0

. C44

0 C36

C45 0

. .

. .

. .

. .

C55 0

. C66

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(2.95)

It is therefore observed that 13 independent elastic moduli are needed to

characterize monoclinic materials.

A material with three mutually perpendicular planes of symmetry is called or-

thotropic. Common examples of such materials include wood and fiber-reinforced

composites. To investigate the material symmetries for this case, it is convenient

to let the symmetry planes correspond to x− y− z coordinate planes. The sym-

metry relations can be determined by using 180◦ rotations about each of the

coordinate axes. Thus, the elasticity matrix for the orthotropic case reduces to
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having only nine independent stiffnesses given by:

Cij =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

C11 C12

. C22

C13 0

C23 0

0 0

0 0

. .

. .

C33 0

. C44

0 0

0 0

. .

. .

. .

. .

C55 0

. C66

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(2.96)

For orthotropic materials, the compliance matrix has similar form but is com-

monly written using notation related to isotropic theory:

Sij =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
E1

−ν21
E2

−ν12
E1

1
E2

−ν31
E3

0

−ν32
E3

0

0 0

0 0

−ν13
E1

−ν23
E2

. .

1
E3

0

. 1
μ23

0 0

0 0

. .

. .

. .

. .

1
μ31

0

. 1
μ12

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(2.97)

where Ei are Youngs moduli in the three directions of material symmetry, νij

are the Poissons ratios defined by −ej/ei for a stress in the i direction, and μij

are the shear moduli in the i, j-planes. Symmetry of this matrix requires that

νij/Ei = νji/Ej.

Another common form of material symmetry is with respect to rotations about

an axis. This concept can be specified by stating that a material possess an axis

of symmetry of order n when the elastic moduli remain unchanged for rotations of

2π/n radians about the axis. The transformation for arbitrary rotations θ about
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the z-axis is given by:

Qij =

⎛⎜⎜⎜⎜⎝
cos θ sin θ 0

− sin θ cos θ 0

0 0 1

⎞⎟⎟⎟⎟⎠ (2.98)

Using this transformation and invoking symmetry for arbitrary rotations cor-

responds to the case of n → ∞, and such materials are called transversely

isotropic. The elasticity stiffness matrix for this case reduces to:

Cij =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

C11 C12

. C11

C13 0

C13 0

0 0

0 0

. .

. .

C33 0

. C44

0 0

0 0

. .

. .

. .

. .

C44 0

. (C11 − C12)/2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(2.99)

Thus, for transversely isotropic materials, only five independent elastic con-

stants exist.

For the case of complete symmetry, the material is referred to as isotropic,

and the fourth-order elasticity tensor has been previously given by:

Cijkl = λδijδkl + μ (δikδjl + δilδjk) (2.100)

This form can be determined by invoking symmetry with respect to two or-

thogonal axes, which implies symmetry about the remaining axis. In contracted

matrix form, this result would be expressed as:
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Cij =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

λ+ 2μ λ

. λ+ 2μ

λ 0

λ 0

0 0

0 0

. .

. .

λ+ 2μ 0

. μ

0 0

0 0

. .

. .

. .

. .

μ 0

. μ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(2.101)

Thus, as shown previously, only two independent elastic constants exist for

isotropic materials. For each case presented, a similar compliance elasticity ma-

trix could be developed.

2.4 The physics of shock-waves

2.4.1 Introduction

Planar shock waves in solid crystalline materials are defined as propagating dis-

turbances capable of giving rise to a discontinuity in the material’s pressure,

temperature (or internal energy) and density, thus resulting in an intense uniax-

ial dynamic compression of the internal crystal structure of the material along

the shock propagation direction. A ”Shock Wave” is then the term which is used

to denote the interface of this discontinuity. The circumstances that surround the

propagation of shock waves in condensed matter are made unique by the extreme

physical conditions that can be attained, together with their exceptionally high

rates of variation. These are typically characterized by pressures ranging from

∼ 100 MPa up to several hundreds of GPa (and up to ten TPa in some unique

experiments), and temperatures up to tens of thousands of degrees Kelvin, cou-

108



pled with durations of the load application varying from 10−9 to 10−5 s. Only

the surface of the vast and active area of research that is the study of shock-

induced compression in solid materials will be scratched within the scope of this

short introduction. For a more comprehensive overview, the reader is referred to

the numerous introductory review textbooks on the subject already available in

the literature, such as those provided by Zel’dovich and Raizer ?, Isbell , Bush-

man and Meyers ?. In addition, Springer offers a comprehensive collection of

textbooks on shock-compression of condensed matter as part of its ”Shock Wave

and High Pressure Phenomena” series ??????. Further comprehensive coverage

of the field is given in the ”Handbook of shock-waves” series of three volumes.

Finally, a more concise introduction to the subject is offered in the review paper

by Duvall .

2.4.2 Rankine-Hugoniot jump conditions

The concept of shock-wave propagation and the equations of conservation of mass,

momentum and energy can be very easily understood and derived by means of

a simplified conceptual framework involving a cylinder of unit cross-sectional

area onto which a piston penetrates. This is shown in Fig. 2.15. Initially the

piston is at rest. It then is pushed into the compressible material, initially, at a

pressure P0 and having density ρ0 at a velocity Up. After a time t1, the highly

compressed region ahead of the piston has moved forward by a distance equal

to USt1, where US is the velocity of propagation of the disturbance ahead of the

piston. During this time interval, the piston has moved by a distance equal to

Upt1. The compressed region has a pressure P and a density ρ, and the particles
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Figure 2.15: Successive positions of an idealised piston moving into a cylinder
with a compressible fluid inside.

within it move at a velocity Up equal to that of the piston. A shock front can be

visualised as a plane discontinuity separating moving from stationary fluid in a

cylinder with a moving piston. The velocity US of the shock-wave is greater than

the piston velocity Up, such that when the piston has traveled a distance Upt1 in

time t1, the shock-wave has travelled a distance USt1.

We can now look at the conservation of mass, momentum and energy across

the shock-front. Since the internal cross-sectional area of the cylinder is unity,

one has, for the compression length (US − Up) t1:

USt1ρ0 = ρ (US − Up) t1 (2.102)

The term USt1ρ0 is the mass of the initial uncompressed material. This equa-

tion applies to any time t, and therefore we have for conservation of mass:
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USρ0 = ρ (US − Up) (2.103)

The momentum is defined as the product of mass and velocity. The change in

momentum of a system is equal to the impulse given to the system. Initially, the

momentum is zero. The momentum at t1 is the product of the mass (US − Up) ρt

and the velocity of the material particles in the compressed volume , Up. Thus

we have for conservation of momentum:

ρ (US − Up)Upt− 0 = (P − P0) t (2.104)

or

ρ (US − Up)Up = (P − P0) (2.105)

The equation of conservation of energy simply states that the work by the

external forces is equal to the change in internal energy plus change of kinetic

energy. In the compression region, at time t, the change in internal energy is:

E1 [ρ (US − Up) t]− E0 [ρ0USt] = (E1 − E0) ρ0USt (2.106)

where E is the internal energy density. The change in kinetic energy is given

by 1/2mv2:

1

2
ρ (US − Up)U

2
p t− 0 =

1

2
ρ0USU

2
p t (2.107)

For a stationary shock-wave, the change in kinetic energy is equal to the
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change in internal energy:

E1 − E0 =
1

2
U2
p (2.108)

Equations (2.103), (2.117) and (2.108) are, in essence, the Rankine-Hugoniot

relationships for a material in which a pressure discontinuity propagates. These

equations apply to a piston moving into a compressible medium (gas) and can be

extended to a shock-wave propagating into gas, liquid, or solid or to a detona-

tion wave. This treatment can be regarded as an analogue to the treatment for

developing Rankine-Hugoniot conservation equations for shock-waves, which will

be illustrated next.

Shock-waves are characterised by a steep front in the form of a discontinuous

surface with no apparent thickness and require in a first instance a state of uni-

axial strain along the shock-propagation direction (no lateral flow of materials)

which allows the build-up of the shear component of stress to high levels. The

requirement for the formation of shock-waves can be understood by considering

the case of an ideal gas being compressed isentropically by a high-pressure distur-

bance travelling through it. The corresponding equation of state for the process

is given by:

PV γ = K = constant (2.109)

By differentiating the above we obtain:

γPV γ−1dV + V γdP = 0→ dP

dV
= −γP

V
(2.110)

Furthermore, it can be shown that the velocity of the disturbance in the gas,
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assuming a one-dimensional configuration, is given by:

u =

(
dσ/dε

ρ

)1/2

=

(
dP/dV

ρ

)1/2

= |K|1/2 (2.111)

where K is the bulk modulus of the gas. Hence the velocity of the disturbance

is proportional to (dP/dV )1/2. Since the value of P/V increases with pressure,

it can be concluded from Eq. (2.110) that high-pressure amplitude isentropic

disturbances travel faster than low-amplitude ones in gases. Hence a disturbance

front will ”steepen up” as it travels through the material because the higher

amplitude regions of the front travel faster than the low amplitude regions. This

is the fundamental requirement for the establishment of a shock-wave, that the

velocity of the pulse, U , increases with pressure, that is:

(
∂2P

∂U2

)
> 0 (2.112)

as P and U increase. Fig. 2.16 demonstrates the steepening of a ramp as it

travels into a sample. The higher pressure components advance faster and catch

up to the low pressure leading edge to form an increasingly steep front with time,

which eventually results in the formation of a shock-wave. The opposite case on

the other hand, where the velocity of the disturbances is inversely proportional

to the pressure amplitude, leads to the dispersion of the wave, which makes it

impossible for the shock-wave to be steady.

The mathematical theory of shock-waves was originally developed by Rankine

and Hugoniot for fluids. The development of the Rankine-Hugoniot equations

relies on several assumptions, most notably that the shear modulus of the material

113



is zero, such that it responds to the wave as a fluid, that body forces (such as

gravitational forces) and heat conduction at the shock front are negligible, and

finally that there is no elastoplastic behaviour or phase transitions. The Rankine-

Hugoniot equations can be easily developed by considering regions immediately

ahead of and behind the shock front. Fig. 2.17 illustrates a shock-front. Ahead

of the front, the pressure is P0, the density is ρ0, and the temperature is T0;

behind it they are P , ρ and T respectively. The velocity of the front is US, and

the particles are stationary ahead of the front. At the front and behind it, they

are moving at a velocity Up. This displacement of particles is responsible for the

pressure build-up. If one considers the centre of reference as the shock front and

moves with it at a velocity US into a region of particle velocity Up = U0 and

density ρ0, then the apparent velocity of the fluid moving towards the centre of

reference is US−U0. At the same time, the material leaving the front or receding

from the centre of reference is moving at a velocity US − Up. With this in mind,

we will set up the equations for the conservation of mass, momentum and energy.

The equation of conservation of mass stems from the fact that the mass moving

toward the front in time dt, given by Aρ0 (US − U0) dt must be equal to the mass

moving away from the front, given by Aρ (US − Up) dt. Hence, if U0 = 0, we have:

ρ0US = ρ (US − Up) (2.113)

This is the equation for the conservation of mass.

The conservation of momentum requires that the difference in momentum,

given by the product of mass and velocity, be equal to the impulse Fdt acting

in time dt per unit cross sectional area. The difference in momentum across the
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Figure 2.16: A schematic of the steepening of a ramped compression launched
into a material sample.

Figure 2.17: Schematic of a shock front moving at velocity US, with the definition
of the material variables ahead of it and behind it.
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shock front is therefore given by:

ρA (US − Up) dt︸ ︷︷ ︸
mass

Up︸︷︷︸
velocity

− ρ0A (US − U0) dt︸ ︷︷ ︸
mass

U0︸︷︷︸
velocity

(2.114)

The impulse on the other hand is given by:

Fdt = (PA− P0A) dt (2.115)

Then, equating change in momentum with impulse, we obtain:

ρ0 (US − U0) (Up − U0) = P − P0 (2.116)

If U0 = 0:

(P − P0) = ρ0USUp (2.117)

This is the equation for the conservation of momentum, and the quantity ρ0US

is often called the shock impedance.

The conservation of energy is obtained by setting up an equation in which the

work done by P minus the work done by P0 is equal to the difference in the total

energy (kinetic plus internal) between the two sides of the front. The difference

of work done by P and P0 is given by:

ΔW = (PA)︸ ︷︷ ︸
force

(Updt)︸ ︷︷ ︸
distance

− (P0A)︸ ︷︷ ︸
force

(U0dt)︸ ︷︷ ︸
distance

(2.118)

The difference in total energy (kinetic plus internal) per unit mass is equal to

the final minus the initial energy:
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ΔE =
1

2
[ρA (US − Up) dt]U

2
p+EAρ (US − Up) dt−

{
1

2
[ρ0A (US − U0) dt]U

2
0 + E0Aρ0 (US − U0) dt

(2.119)

So equating ΔW to ΔE and taking U0 = 0 yields:

PUp =
1

2
ρ (US − Up)U

2
p − E0ρ0US + Eρ (US − Up) (2.120)

But from conservation of mass, ρ (US − Up) = ρ0US. Substituting into the

above we get:

PUp =
1

2
ρ0USU

2
p + ρ0US (E − E0) (2.121)

This equation can be simplified to obtain a more common form:

E − E0 =
PUp

ρ0US

− 1

2
ρ0

USU
2
p

ρ0US

(2.122)

But, from conservation of momentum, Up = (P − P0)/ρ0US. Substituting for

Up in the above, we obtain:

E − E0 =
P (P − P0)

ρ20U
2
S

− 1

2

(P − P0)
2

ρ20U
2
S

(2.123)

Again, from conservation of mass, ρ0US = ρ (US − Up), and using conservation

of momentum:

ρ0U
2
S = −ρ (P − P0)

1

(ρ0 − ρ)
(2.124)

If 1/ρ = V then, simplifying, we get:
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ρ20U
2
S =

P − P0

V0 − V
(2.125)

Substituting this back into Eq. (2.123), we get:

E − E0 =
1

2
(P + P0) (V0 − V ) (2.126)

Eq. (2.126) is the more common form of the conservation of energy. In the

three conservation equations of mass, momentum and energy, Equations (2.113),

(2.117), (2.126), there are five variables: pressure P , particle velocity Up, shock

velocity US, specific volume V or density ρ, and energy E. Hence, an additional

equation is needed if one wants to determine all parameters as a function of one of

them. This fourth equation, which can be conveniently expressed as the relation-

ship between shock and particle velocities, has to be experimentally determined.

A polynomial equation with parameters C0, S1, S2, S3..... empirically describes

the relationship between US and Up:

US = C0 + S1Up + S2U
2
p + ..... (2.127)

Eq. (5.38) is often known as the equation of state (EoS) of a material. Here,

S1 and S2 are empirical parameters and C0 is the sound velocity in the material

at zero pressure. For most metals, S2 = 0, and Eq. (5.38) thus reduces to a linear

relationship:

US = C0 + S1Up (2.128)

This linear relationship between US and Up describes fairly well the shock
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response of materials not undergoing phase transitions and with no porosity.

Values of C0 and S1 are often tabulated in the literature; hence knowing these

values and applying the conservation equations and the EoS, one can calculate

the P − US, P − Up, P − ρ, P − V /V0, E − US, and other relationships. It is

important to note that one needs only two shock parameters to determine the

remaining ones once the constants in the EoS are known. There are in total five

shock parameters with which we deal: P , E, ρ (or V ), US and Up. With the

use of EoS, these relationships can be separated into 10 pairs. These 10 pairs

provide, in turn, 20 equations, which are summarised in page 116 of Ref. ?.

2.4.3 The Hugoniot curve

Eq. (2.126), derived from the conservation of energy, establishes a relation be-

tween P and ρ immediately behind the shock-front. This pressure-density re-

lationship is usually known as the Rankine-Hugoniot equation, or simply the

”Hugoniot”, and in graphic form is shown in Fig. 3.20 as a P − V curve. The

Hugoniot is therefore defined as the locus of all shocked states in a material and

essentially describes the material properties. The straight line joining (P0, V0)

and (P1, V1) is known as the Rayleigh line and refers to the shock state at P1.

It is very important to realise that when pressure is increased in a shock

front, it does not follow the Hugoniot curve. Rather, it changes discontinuously

from its initial value P0 to its value P1 as defined by the Rankien Hugoniot

relationships. This discontinuity is explained by the slope of the Rayleigh line

that is proportional to the square of the velocity US of the shock-wave. One can

see this from the following derivation. Starting from the equation of conservation
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Figure 2.18: Hugoniot (P − V ) curve denoting all the shocked states that can be
attained in a material. The Rayleigh line connecting the initial to the final states
is also shown.

of momentum:

P − P0 = ρ0USUp (2.129)

or

P − P0

Up

= ρ0US (2.130)

But from conservation of mass we have:

ρ0US = ρ (US − Up)→ Up = US
ρ− ρ0

ρ
(2.131)

Thus:
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P − P0

1− ρ0/ρ
= ρ0U

2
S (2.132)

But:

ρ0
ρ

=
V

V0

(2.133)

So:

P − P0

1− V /V0

= ρ0U
2
S (2.134)

This is equivalent to:

P − P0

V − V0

= −ρ20U2
S (2.135)

The left-hand side of the above equation is the slope of the Rayleigh line. One

sees clearly that the higher the pressure, the higher the magnitude of the slope

and the higher the velocity of the wave.

2.4.4 Real shock-wave profiles and the Hugoniot Elastic

Limit

While an ideal shock-wave profile would predict a discontinuity at the front, a

plateau at the top, and a gradual return to zero pressure, real shock-waves exhibit

a number of peculiarities that are material and pressure dependent. The profiles

of idealised and realistic shock-waves are shown in Fig. 2.19. The most important

difference is that the pressure-volume curve for a real material is not the same as
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the ideal Hugoniot curve because of the deviatoric component of stress present in

the former. The difference between the two curves is shown in Fig. 2.20. Firstly,

the rate of rise of stress with volume of the real material’s curve is much higher in

the elastic range. Secondly, when the elastic limit under the imposed stress and

strain-rate conditions is reached above some limit of the value of the deviatoric

stress, a dynamic yield point known as the Hugoniot Elastic Limit (HEL), the

pressure-volume curve of the real material exhibits a change in slope and curves

downward. The value of stress at the HEL is a material-specific parameter that

specifies the elastic-to-plastic transition. The three arrows in Fig. 2.20 indicate

the flow strength of the material at the imposed strains, defined as the difference

between the ideal Hugoniot curve and the actual pressure-volume curve of the

material. The three cases shown in Fig. 2.20 represent in turn:

• Curve 1: Flow strength of material is independent of pressure.

• Curve 2: Flow strength of material decreases with pressure, leading to

softening.

• Curve 3: Flow strength of material increases with pressure, leading to hard-

ening.

The HEL of metals is fairly low, and these effects are relatively unimportant.

However, in ceramics this is not the case. For example, the HEL of sapphire is

close to 20 GPa, whereas that of alumina is around 6-8 GPa. The position of the

HEL separating the elastic portion of the wave from the plastic portion is shown

in the realistic time profile of Fig. 2.19. This elastic portion, below the HEL,

normally travels at a velocity higher than the plastic wave. The propagation
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velocity of the elastic wave is equal to the longitudinal sound velocity, which is

always larger than the plastic-wave velocity. For the elastic shock-wave, stress

and strain at the shock-front can be given by:

σx = (λ+ 2μ) εx

σy = σz = λεx

(2.136)

for the case of shock-propagation along the x direction, where σx, σy and σz

denote the components of the stress tensor, εx denotes the one-dimensional strain

component, and λ, μ denote the Lame’ constants. If yielding occurs behind the

elastic precursor wave, the shock yield stress Y can be given by:

Y = 2μεx (2.137)

This result is obtained by assuming either the maximum shear stress or von Mises

criterion for yielding due to the condition of one-dimensional strain.

At this point we are in a position to explain all the phenomena observed in Fig.

2.19(b). The leading wave is an elastic shock limited in amplitude by the shear

strength of the material. In an ideal elastic-plastic solid, after the initial steep rise

in pressure (or particle velocity), this elastic wave attains the HEL of the material.

Permanent plastic deformation occurs through a splitting of the leading elastic

precursor wave into two waves, an elastic wave and a slower plastic wave. The

latter wave is what gives rise to the plastic behaviour. The ensuing rate of rise of

the pressure is dictated by the constitutive behaviour of the material. In general,

the rise becomes steeper as the shock-induced pressure increases. If there is a

phase transition following the regime of plastic deformation, it is accompanied by
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Figure 2.19: Idealised (a) and ”generic” realistic (b) shock-wave stress or particle
velocity profiles. In the latter case, the positions of the features in the profile
characteristic of the onset of various types of material behaviour are labelled.
This variety of material behaviour is explained in the text of this subsection.

a clear signal in the wave profile, which normally consists in the further splitting

into two of the wave. The phase transition occurs via the arrival of the phase

transition wave resulting from this splitting, and goes to completion if the driving

pressure is large enough. This phase transition wave travels even more slowly than

the plastic wave, which in turn travels more slowly than the elastic precursor. At

the top of the plot of Fig. 2.19(b) we have the pulse duration plateau labelled

as the Hugoniot State, since this represents the endstate which is attained on

the characteristic pressure-volume curve of the material. When unloading starts

following this plateau, it occurs initially elastically and then plastically. This

elastoplastic transition in unloading leaves a signal analogous to the signal left

by the HEL on loading. This signal is normally referred to as the Release or
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Figure 2.20: Representation of the pressure-volume curves for a real material
(red) compared to that of an idealised material (black). The position of the HEL
in the former is labelled. Three different red curves labelled 1,2 and 3 are shown,
corresponding to the behaviour of three different materials.

Rarefaction wave, and returns the material to something approaching its original

state. At the end of the unloading process, the wave reflects from the back

surface of the sample and this phenomenon, known as spalling, can result in the

fracturing of the material.

At high-pressures, structural phase transitions will take place in various ma-

terials. During these transformations, the lattice structure changes to a more

stable configuration for the pressure and temperature realised by strong shock-

compression. In such cases, the shock Hugoniot compression curve has the ap-

pearance as in Fig. 2.21. According to the thermodynamics of the problem,

which will be explored in more detail in Chapter 4, the isotherm around first-

order phase transitions in the pressure-volume plane has a horizontal line segment
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Figure 2.21: Hugoniot curve for a material undergoing a high-pressure polymor-
phic phase transition.

at the mixed-phase region. The shock-hugoniot in this region on the other hand

should have a negative slope due to the temperature and entropy increase caused

by the decreasing volume.

Finally, we analyse the response of the shock-loaded sample at the microstruc-

tural level of the underlying crystal lattice. It is widely accepted that the material

morphology and timescales of atomistic phenomena have a profound impact on

bulk properties, such as plasticity, phase transformations, and damage. Fig 2.22

shows the various stages of development of the shock-induced deformation of

the crystal structure put in direct correlation with the various features of the

real-material wave profile of Fig. 2.19. In the case of a planar shock considered

here, the initial response of the crystalline lattice to shock-loading is a uniaxial,

one-dimensional compression of the crystal along the direction of shock propa-

gation. This uniaxial response can remain elastic, that is once the disturbance
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is removed, the lattice will relax back to its original configuration. Furthermore,

this uniaxial compression leads to the accumulation of strong levels of shear stress

in the lattice. Under high-stress conditions and given sufficient time, the lattice

will undergo an irreversible (permanent) deformation. Various morphologies of

permanent deformation can occur, consisting in either plasticity, melting, reso-

lidification, or solid-solid structural transformations. These atomistic changes

can have dramatic and important consequences to most macroscopically observ-

able behavior such as the materials thermodynamic state (pressure, temperature,

density), strength, and failure. If the shock-wave propagating through the lattice

exceeds the HEL of the material, the shear stress accumulated during the elas-

tic phase of the compression leads to nucleation and propagation of dislocations,

allowing the lattice to plastically relax to a quasi-hydrostatic, three-dimensional

state of compression on some characteristic timescale. A fully 3D relaxed state is

ideally defined as having zero shear stress and hydrostatic compression. The rate

of relaxation to hydrostatic conditions is controlled by the nucleation rates and

mobility of dislocations, which in turn depend upon microstructural parameters

such as grain boundaries, barriers, etc. Experimentally, this relaxation of the lat-

tice behind a shock has been studied with time-resolved X-ray diffraction in FCC

metals. As an example, such kinetics have been studied in single crystal copper

shocked to 18 Gpa. The degree of lattice relaxation was determined through

diffraction recorded from planes both parallel and perpendicular to the shock

loading direction. These samples were found to have approached a fully 3D state

in less than 400 ps after the passage of the shock front. Under shock compres-

sion, solids can also exhibit a rich variety of solid-to-solid phase transformations,

some of which are metastable and, due to the uniaxial and ultrafast nature of
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Figure 2.22: A schematic diagram of a shocked crystalline solid, linking mi-
crostructural processes to the bulk behavior measured by inspection of the pres-
sure or particle velocity wave profile. The rearrangement of the atoms as the
lattice relaxes plastically or undergoes a phase-transition alters the response of
the material, causing the corresponding change in the wave profile.

the compression, may differ from those encountered under longer timescale and

more hydrostatic conditions such as during static DAC-based experiments. Phase

transitions in general provide an alternative microscopic mechanism for the relief

of shear stress from plastic deformation. Carbon, for example, demonstrates a

wide range of structural phases along the Hugoniot, including cubic, hexagonal,

nanocrystalline, and amorphous diamond. Solid-to-melt transformations can also

occur under sufficiently strong shocks.

Historically, two approaches have been employed to probe the dynamic re-

sponse properties of materials to shock-compression: sample recovery and in situ

bulk property measurements. The first approach affords for microstructural anal-

ysis but does not allow direct probing of the samples under dynamic loading. The
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examination of shock recovered specimens in fact provides only end-state infor-

mation that can only be useful for inferring dynamic behaviour. In the second

approach, real-time measurements of the bulk response are recorded with fast di-

agnostics such as surface velocimetry (VISAR) and internal stress gauges. While

such approaches have proven themselves to be valuable and are largely responsible

for our current understanding, these continuum level methodologies are limited

in the insight that they can provide about atomistic lattice-level processes un-

der dynamic conditions. It is clear that a fundamental understanding requires

the direct probing and study of relevant, transient physical processes at their

characteristic lattice length (of order Å) and time (of order picosecond) scales.

The technologies of ultrabright, pulsed X-ray sources for in situ time-resolved X-

ray diffraction experiments, and massively parallel computation employing such

techniques as classical Molecular Dynamics described in the next section, have

emerged as particularly promising for investigating the shock-response of solids

at the atomistic level. In particular, there exist two main classes of experimen-

tal approaches: the first one is based on the use of high-power lasers for both

driving the shock-wave into the sample and generating X-rays by plasma-line

emission from a backlighting metallic foil. The second approach is accelerator-

based such as realised in synchrotrons or at 4th generation X-ray Free Electron

Laser sources such as LCLS. The latter class of facilities in particular possesses

unparalleled X-ray beam quality, brightness, pulse duration shortness and rep-

etition rate for performing time-resolved measurements. These approaches are

complementary in their capacity to probe from the nano-to-macroscale in the

spatial and picosecond-to-nanosecond in the temporal regimes.
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2.5 Classical Molecular Dynamics

2.5.1 Introduction

A general definition of classical molecular dynamics (MD) simulation is a com-

putation technique by which the atomic trajectories of a system of N particles

are generated by numerical integration of Newton’s equation of motion (within a

given statistical ensemble). This integration is performed in conjunction with the

operation of a specific interatomic potential to calculate the forces on each atom,

and with certain initial conditions (IC) and boundary conditions (BC). Let us

consider for example a system with N atoms in a volume Ω. The internal energy

of the system E can be defined as the sum of the kinetic energy K and potential

energy U , E = K + U . The kinetic energy is given by:

K =
N∑
i=1

1

2
mi|ẋi (t)|2 (2.138)

whereas the potential energy can be expressed as:

U = U
(
x3N (t)

)
(2.139)

where x3N (t) denotes the group of three-dimensional coordinates x1 (t) ,x2 (t) , .......,xN (t).

If the system is isolated, then E is a conserved quantity and therefore constant

with time. MD simulations can be structured into four main steps, very much

like experiments: system setup, equilibration, simulation run and output. In the

equilibration step, we fine-tune the system until it reaches the desired conditions,

such as for example temperature T and pressure P , and then in the simulation
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step we perform property averages, for example calculating the radial distribution

function g(r) or thermal conductivity.

2.5.2 Elements of Molecular Dynamics simulations

There are five key ingredients to a MD simulation, which are boundary con-

ditions, initial conditions, force calculation, integrator/ensemble, and property

calculation. A brief overview of each one of these elements will now be given.

There are two major types of boundary conditions: isolated boundary con-

dition (IBC) and periodic boundary condition (PBC). IBC is best suited for

studying clusters and molecules, while PBC is suited for studying bulk liquids

and solids. There can also be mixed boundary conditions such as slab or wire

configurations for which the system is assumed to be periodic in some directions

but not in the others. In IBC, the N -particle system is surrounded by vacuum.

These particles are still able to interact among themselves, but they are so far

away from everything else in the universe that no interactions with the outside

occur expect perhaps responding to some well-defined external forcing. In PBC

on the other hand, the motion of the N particles in the supercell are followed,

but the supercell is surrounded by infinitely replicated, periodic images of itself.

Therefore a particle may interact not only with particles in the same supercell,

but also with particles in adjacent image supercells. The simplest and most often

used space filling unit which can serve as the PBC supercell is a parallelepiped,

specified by its three edge vectors h1, h2 and h3. IBC can in fact often be well

reproduced by a large enough PBC supercell such that the images do not interact

among themselves.
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Since Newton’s equations of motion are second-order ordinary differential

equations (ODE), specifying the initial conditions basically means specifying

x3N (t = 0) and ẋ3N (t = 0), the initial particle positions and velocities. For crys-

talline solids, generating the IC is usually straightforward, but for liquids and

amorphous solids less so. Liquids and amorphous solids can be generated by

melting and quenching of crystalline solids during a MD run. Let us focus on IC

for crystalline solids only. x3N (t = 0) can for example be a perfect fcc crystal,

or an interface between two crystalline phases. According to the equipartition

theorem, each independent degree of freedom should possess kBT/2 kinetic en-

ergy. So, one should draw each component of the 3N -dimensional ẋ3N (t = 0)

vector from a Gaussian-Maxwell normal distribution. After that, the centre of

mass velocity should be eliminated, and for clusters, the net angular momentum

as well.

Two approximations are employed in the classical equation of motion to de-

scribe the motion of the atoms:

mi
d2xi (t)

dt2
= fi = −∂U

∂xi

, i = 1, ........, N (2.140)

The first is the Born-Oppenheimer approximation, which assumes that the elec-

tronic state couples adiabatically to nuclei motion. The second is that the

nucleus motion is far removed from the Heisenberg uncertainty lower bound:

ΔEΔt 
 �/2. If we insert ΔE = kBT/2, the kinetic energy, and Δt = 1/ω ,

where ω is a characteristic vibrational frequency, we obtain kBT/�ω 
 1. In

solids, this means that the temperature shoould be significantly greater than

the Debye temperature. The evaluation of the right-hand side of Eq. (2.140) is
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usually the most computationally-expensive step in a MD simulation, so its effi-

ciency is of crucial importance. There exist special algorithms to break up long

range Coulomb interactions into two contributions, a short-range interaction and

a smooth field-like interaction, both of which can be computed efficiently in sep-

arate ways.

Eq. (2.140) is a set of second-order ordinary differential equations, which can

be strongly non-linear. By converting them to first-order Ordinary differential

equations in the 6N -dimensional space of {xN , ẋN}, general numerical algorithms

for solving ordinary differential equations such as the Runge-Kutta method can

be applied. However, these general methods are rarely used in MD, because the

existence of a Hamiltonian allows for more accurate integration algorithms, in-

cluding the family of predictor-corrector integrators and the family of symplectic

integrators. Integrators will be discussed in more detail in the next section. En-

sembles such as the micro-canonical, canonical and grand-canonical are concepts

in statistical physics that refer to the distribution of initial conditions. How-

ever, ensemble and integrator are often grouped together because it is possible to

generate the desired ensemble distribution via time integration.

One of the great powers of classical MD is that it provides a nearly complete

amount of information at the atomistic level. All properties that are well defined

in classical mechanics and statistical mechanics can in principle be computed.

The only limiting factors are the accuracy of the calculations, which is limited by

the choice of the interatomic potential, and the computational efficiency. The ma-

terial properties that can be calculated by MD can be roughly grouped into four

categories. Firstly, we have structural characterisation, which includes for exam-

ple the calculation of radial distribution functions and dynamic structure factors.
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Secondly, we have equation of state calculations, which includes the calculation of

free energy functions, phase diagrams, and static response functions like the ther-

mal expansion coefficient. A third type of calculations are those which pertain

to the transport properties of the material, which includes for example viscosity,

thermal conductivity, correlation functions and diffusivity. Finally, MD is capable

of calculating the non-equilibrium response of the sample, which includes such

phenomena as plastic deformation and pattern formation.

2.5.3 Integrators

An integrator is defined as the algorithm which advances the trajectory of the

atoms in the MD simulation over small time increments Δt:

x3N (t0)→ x3N (t0 +Δt)→ x3N (t0 + 2Δt)→ ...→ x3N (t0 + LΔt) (2.141)

where L usually ranges from 104 to 107. We will now give a brief overview of

some popular integrator algorithms: central difference (Verlet, leap-frog, velocity

Verlet and Beeman algorithm), predictor-corrector, and symplectic integrators.

In the Verlet Algorithm, assuming the x3N(t) trajectory is smooth, we perform

the Taylor expansion:

xi (t0 +Δt) + xi (t0 −Δt) = 2xi (t0) + ẍi (t0) (Δt)2 + O
(
(Δt)4

)
(2.142)

Since ẍi (t0) = fi (t0)/mi can be evaluated given the atomic positions x3N(t0) at
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t = t0, x
3N(t0 +Δt) in turn may be approximated by:

xi (t0 +Δt) = −xi (t0 −Δt) + 2xi (t0) +

(
fi (t0)

mi

)
(Δt)2 + O

(
(Δt)4

)
(2.143)

By discarding the O
(
(Δt)4

)
term, we obtain a recursion formula to compute

x3N (t0 +Δt) , x3N (t0 + 2Δt) , ... successively, which is the Verlet algorithm. The

velocities do not appear in the recursion but are needed for property calculations.

They are given approximately by:

vi (t0) ≡ ẋi (t0) =
1

2Δt
[xi (t0 +Δt)− xi (t0 −Δt)] + O

(
(Δt)2

)
(2.144)

We now investigate to what degree the above recursion reproduces the real tra-

jectory x3N(t). If the xi(t0) and xi(t0 −Δt) terms in Eq. (2.143) are exact, and

assuming the computer employed is perfect and has no machine errors in storing

the numbers or carrying out floating-point operations, the computed xi(t0 +Δt)

would still be different from the real xi(t0 + Δt) by O
(
(Δt)4

)
, which is defined

as the local truncation error (LTE). LTE is an intrinsic error of the Verlet algo-

rithm. In addition to LTE, there is a round-off error due to the computer’s finite

precision.

In the so-called Leap-frog Algorithm, we start out with v3N (t0 −Δt/2) and

x3N(t0). The iterative scheme to advance by one step is given by:

vi

(
t0 +

Δt

2

)
= vi

(
t0 − Δt

2

)
+

(
fi (t0)

mi

)
Δt (2.145)

followed by:

xi (t0 +Δt) = xi (t0) + vi

(
t0 +

Δt

2

)
Δt (2.146)
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The velocity at time t0 can be approximated by:

vi (t0) =
1

2

[
vi

(
t0 − Δt

2

)
+ vi

(
t0 +

Δt

2

)]
+ O

(
(Δt)2

)
(2.147)

Thirdly, in the velocity Verlet algorithm, we start with x3N(t0) and v3N(t0),

and then we have:

xi (t0 +Δt) = xi (t0) + vi (t0)Δt+
1

2

(
fi (t0)

mi

)
(Δt)2 (2.148)

We next evaluate f3N(t0 +Δt), and then:

vi (t0 +Δt) = vi (t0) +
1

2

(
fi (t0)

mi

+
fi (t0 +Δt)

mi

)
Δt (2.149)

and we have advanced by one step. Since this algorithm can yield simultaneously

x3N(t0) and v3N(t0), it is commonly used in MD codes.

Fourthly, we consider the so-called Beeman algorithm, which is similar to

the velocity Verlet algorithm. We start with x3N(t0), f
3N(t0 − Δt), f3N(t0) and

v3N(t0), and then we have for the iterative scheme to advance by one step:

xi (t0 +Δt) = xi (t0) + vi (t0)Δt+

[
4fi (t0)− fi (t0 −Δt)

mi

]
(Δt)2

6
(2.150)

We next evaluate f3N(t0 +Δt), and finally we obtain for the velocity:

vi (t0 +Δt) = vi (t0) +

[
2fi (t0 +Δt) + 5fi (t0)− fi (t0 −Δt)

mi

]
Δt

6
(2.151)

Just like the leap-frog and the velocity-Verlet algorithms, the Beeman algorithm
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gives identical trajectory as the Verlet algorithm in the absence of machine er-

ror, with a fourth-order LTE in position. However, it gives better velocity esti-

mate (third-order LTE) than the leap-frog or velocity Verlet (second-order LTE).

The best velocity estimate (fourth-order LTE) can be achieved by the so-called

velocity-corrected Verlet algorithm, but it requires knowledge of the next two

steps’ positions.

We now describe the predictor-corrector algorithm. Let us take the commonly

used 6-value predictor-corrector algorithm as an example. We start with the

6 × 3N storage composed of x3N(0) (t0), x3N(1) (t0), x3N(2) (t0),.......,x
3N(5) (t0),

where x3N(k) (t) is defined by:

x
(k)
i (t) ≡

(
dkx

(t)
i

dtk

)(
(Δt)k

k!

)
(2.152)

The iteration consists of the prediction, evaluation and correction steps. The

prediction step is based on the following general formula:

x
(k)
i =

M−1∑
k′=k

[
k′!

(k′ − k)!k!

]
x
(k′)
i , k = 0, .....,M − 2 (2.153)

with M = 6 here. The evaluation must proceed from 0 to M − 2 sequentially.

In the subsequent evaluation step, we evaluate the force f3N using the newly

obtained x3N(0). Finally, in the correction step, we define the error e3N as:

ei ≡ x
(2)
i −

(
fi
mi

)(
(Δt)2

2!

)
(2.154)
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Table 2.5: Gear predictor-correctors coefficients.

CMk k = 0 k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7
M = 4 1/6 5/6 1 1/3
M = 5 19/120 3/4 1 1/2 1/12
M = 6 3/20 251/360 1 11/18 1/6 1/60
M = 7 863/6048 665/1008 1 25/36 35/144 1/24 1/360
M = 8 1925/14112 19087/30240 1 137/180 5/16 17/240 1/120 1/2520

Then we apply corrections:

x
(k)
i = x

(k)
i − CMkei, k = 0, ....,M − 1 (2.155)

where CMk are constants listed in Table 2.5. The LTE for x3N is O
(
(Δt)M

)
after

the prediction step. But one can show that the LTE is reduced to O
(
(Δt)M+1

)
after the correction step if f3N depends on x3N only, and not on the velocity.

Finally, we consider the case of Symplectic Integrators, which have the unique

quality of being able to rigorously maintain the phase-space volume conservation

property of Hamiltonian dynamics (Liouville’s theorem), in the absence of round-

off errors. This property severely limits the possibilities of mapping from initial to

final states, and for this reason symplectic integrators tend to have much better

total energy conservation in the long run. The velocity Verlet algorithm is in fact

symplectic, followed by higher order extensions.

2.5.4 The Tersoff Potential

The semi-empirical interatomic potentials employed in MD simulations permit

the calculation of structural properties and energetics of complex systems. In

particular interatomic potentials give the total energy E of a set of particles
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as an explicit mathematical function of the set {r} of particle coordinates. If

this function is sufficiently easy to calculate, and if it gives a sufficiently accu-

rate description of the real physical system of interest, then one can perform

realistic calculations of the properties of relatively large systems. Of course the

accuracy delivered by such potential-based calculations will always inevitably be

worse than that characteristic of truly quantum-mechanical ab-initio methods

such as Density Functional Theory. Most MD potentials are created by fitting

the adjustable parameters to bulk properties of the material under investigation.

Common material properties used for fitting empirical potentials include lattice

parameter, bulk modulus and elastic tensor components.

Pair potentials, like the notable Lennard-Jones potential and the exponential

Morse potential, have long been used to describe rare-gas atoms, simple metals,

and highly ionic systems. These potentials describe the interaction of atoms as

a function of their separation, including only two-body interactions. Such poten-

tials can be directly applied to a completely arbitrary configuration of atoms but

do not accurately describe any but the simplest closed-shell systems. In particu-

lar, pair-potentials are completely inapplicable to strongly covalent systems such

as semiconductors. This pair potential approach corresponds to the leading term

in a mathematical expansion of the energy, viewed as a function of the atomic

positions. The energy of N interacting particles may be written as:

E =
∑
i

Vi (ri) +
∑
i<j

V2 (ri, rj) +
∑
i<j<k

V3 (ri, rj, rk) + ... (2.156)

where rn is the position of the n-th particle and the function Vm is called an m-

body potential. The first (one-body) term corresponds to an external potential.
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The first term which describes the interactions between the particles is the second

(two-body) term, which when taken alone constitutes a pair potential. Thus, in

this expansion, the pair potential is the simplest possible model for the interaction

of a set of particles. A general feature of atomic pair potentials is that they

favour the formation of closed-packed structures, and therefore are unsuitable for

describing covalent systems, which assume more open structures.

The more recent Tersoff scheme offers a new approach for constructing po-

tentials affording for a improved description of covalent materials such as semi-

conductors like silicon and other interesting materials such as ceramics, polymers

and refractory metals. The central idea behind Tersoff is that, in real systems,

the bond order (that is, the strength of each bond) depends upon the local en-

vironment. In particular, an atom with many neighbours forms weaker bonds

than an atom with few neighbours. For covalent materials, this dependence is

sufficient to stabilise structures with low atomic coordination number. Including

this dependence explicitly in the Tersoff scheme appears to solve some of the most

serious problems of describing covalent systems without introducing any major

increase in computational complexity. Tersoff appears to be particularly suited

for modelling silicon, which represents a particular challenge because it has many

polymorphs with qualitatively different bonding which, nevertheless, have simi-

lar cohesive energies. For this reason, Tersoff is by far the most widely employed

potential for modelling silicon.

For describing covalent systems, a natural first step was to include the next

term in the expansion of Eq. (2.156), and therefore obtain a three-body po-

tential. This additional term could stabilise more open structures. However, it

was found that a three-body potential was inadequate for accurately describing
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the cohesive energy of silicon over a wide range of bonding geometry and coor-

dination. However, at the same time, a general form for a four- or a five-body

potential would probably prove intractable, and would contain far too many free

parameters. As an alternative, the Tersoff approach was introduced going beyond

the three-body potential. In attempting to construct an accurate and tractable

potential, it abandons the use of a general N -body form and attempts to identify

the relevant physics and to build it directly into the form of the potential.

It is a well-known fact that the more neighbours an atom has, the weaker the

bond to each neighbour will be. The bond strength, or bond order, in general

depends in a complicated way on the geometry. However the most important

single variable appears to be the coordination number, that is the number of

neighbours close enough to form bonds. In particular, the bond order appears

to be a monotonically decreasing function of coordination, with the trade-off

between bond-order and number of bonds determining the equilibrium coordina-

tion. Silicon in particular is notable for assuming structures with a large range of

coordination over modest changes of pressure. The difference in cohesive energy

among these structures is remarkably small. This is because the decrease in bond

strength with increasing coordination number very nearly cancels the increase

in the number of bonds, over a large range of coordination. Silicon therefore

provides a particularly stringent test of the ability of the Tersoff potential to

accurately describe the dependence of bonding upon coordination, and therefore

the dependence of cohesion upon structure.

Because of the crucial role of bond order and its dependence upon local ge-

ometry, Tersoff includes an environment-dependent bond order explicitly into the
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potential in the following way:

E =
∑
i

Ei =
1
2

∑
i �=j

Vij

Vij = fC (rij) [aijfR (rij) + bijfA (rij)]

(2.157)

Here E is the total energy of the system, which is decomposed into a site energy

Ei and a bond energy Vij. The indices i and j run over the atoms of the system,

and rij is the distance from atom i to atom j. The function fR represents a

repulsive pair potential and fA represents an attractive pair potential associated

with bonding. The extra term fC is merely a smooth cutoff function, to limit the

range of the potential, since for many applications short-ranged functions permit

a significant reduction in computational expense. The function bij is the only

novel feature of the Tersoff potential. It represents a measure of the bond-order,

and is assumed to be a monotonically decreasing function of the coordination of

atoms i and j. Determining a satisfactory form for bij is by far the most difficult

part of applying the Tersoff approach.

The functions fR, fA, fC , aij and especially bij still need to be determined.

The choice of exponential functions for fR and fA, as in a Morse potential, proves

to be a convenient one:

fR (r) = A exp (−λ1r)

fA (r) = −B exp (−λ2r)
(2.158)
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The cutoff function is simply taken as:

fC (r) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1, r < R−D

1
2
− 1

2
sin

[
π
2
(r −R)/D

]
, R−D < r < R +D

0, r > R +D

(2.159)

which has continuous value and derivative for all r, and goes from 1 to 0 in a small

range around R. R is chosen to include only the first-neighbour shell for most

structures of interest. The parameters R andD specify the position and the width

of the cutoff region. The short range of the potential is numerically advantageous

in many applications. Furthermore, bij is taken to have the following form:

bij =
(
1 + βnξnij

)−1/2n
ξij =

∑
k �=i,j

fC (rik) g (θijk) exp
[
λ3
3(rij − rik)

3]
g (θ) = 1 + c2/d2 − c2

/[
d2 + (h− cos θ)2

] (2.160)

where θijk is the bond angle between bonds ij and ik. Finally, the form proposed

by Tersoff for aij is:

aij =
(
1 + αnηnij

)−1/2n
ηij =

∑
k �=i,j

fC (rik) exp
[
λ3
3(rij − rik)

3] (2.161)

with α taken sufficiently small that aij � 1 unless ηij is exponentially large, which

will only occur for atoms outside the first-neighbour shell. The terms aij and bij

contain the three-body interactions and modify the strengths of the repulsive and

attractive terms according to the bonds local environment. The resulting Tersoff

potential has performed quite well in describing many properties of silicon.
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The Tersoff potential was further refined by Erhart and Albe for the cases of

silicon, carbon and silicon carbide with the addition of some new free parameters.

The cohesive energy is now written as a sum over individual bond energies:

E =
∑
i>j

fC (rij)

⎡⎢⎢⎢⎣VR (rij)− bij + bji
2︸ ︷︷ ︸
bij

VA (rij)

⎤⎥⎥⎥⎦ (2.162)

with the pairwise attractive and repulsive contributions given by:

VR (r) =
D0

S − 1
exp

[
−β
√
2S (r − r0)

]
(2.163)

and

VA (r) =
SD0

S − 1
exp

[
−β

√
2/S (r − r0)

]
(2.164)

where D0 and r0 are the dimer energy and bond length. β and S are adjustable

free parameters of the potential. The cutoff function is the same as that of the

general Tersoff potential. The bond-order is given by:

bij = (1 + χij)
−1/2 (2.165)

with

χij =
∑
k �=i,j

fC (rik) exp [2μ (rij − rik)] g (θijk) (2.166)

and the angular function:

g (θ) = γ

(
1 +

c2

d2
− c2

d2 + [h+ cos θ]2

)
(2.167)
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The three-body interactions are determined by the parameters 2μ, γ, c, d, and h,

which leads in total to up to nine adjustable parameters, all of them depending

on the type of atoms i and j. This new bond-order potential for silicon, carbon

and silicon carbide reproduces well the elastic, thermal and point defect proper-

ties. The description of higher coordinated structures for silicon and carbon is

comparable to the Tersoff potential, while elastic, defect and thermal properties

are superior.

2.6 Density Functional Theory

2.6.1 The Kohn-Sham formulation of Density Functional

Theory

The raison d’etre of Density Functional Theory (DFT) is the solution of the many-

body Hamiltonian for a system of N electrons and M positively-charged nuclei

(or ions) in a crystalline solid, the starting point for nearly all problems in solid-

state physics. Neglecting all relativistic and magnetic effects, this Hamiltonian

can be written as:

ĤN = − �
2

2me

N∑
i=1

∇2
i −

N,M∑
i,I=1

ZIe
2

4πε0 |ri −RI| +
1

2

i �=j∑
i,j

e2

4πε0 |ri − rj|

−
M∑
I=1

�
2

2MI

∇2
I +

1

2

I �=J∑
I,J

ZIZJe
2

4πε0 |RI −RJ|

(2.168)

where the electrons are denoted by lower case subscripts and the nuclei, with

charge ZI and mass MI , by upper case subscripts. The terms in this Hamiltonian

represent, from left to right, the kinetic energy of the electrons, the attractive
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potential acting on the electrons due to the nuclei, the repulsive electron-electron

interaction, the kinetic energy of the nuclei and finally the repulsive internuclear

electrostatic interaction. In practice, such an elementary equation as Eq. 2.168

is impossible to solve analytically for all but the most trivial systems because of

the enormously complicating effects of the interactions between electrons, which

leads to coupling between the electronic coordinates in the system. This coupling

manifests itself under the well-known phenomena of inter-electron exchange and

correlation interactions in QuantumMechanics . The issue central to the theory of

electronic structure is therefore the development of approximate methods using

simplifying physical ideas to treat electronic interactions and correlations with

sufficient accuracy such that, starting from Eq. 2.168, one can still gain insight

into the diverse array of electronic properties and phenomena exhibited by real

solid matter.

One initial simple approximation involves setting the mass of the ions MI to

infinity, which is tantamount to saying that the positions of the ions are assumed

fixed to their corresponding lattice points within the crystal structure. This so-

called Born-Oppenheimer, or Adiabatic, approximation in electronic structure

calculations allows the ionic kinetic energy term in Eq, 2.168 to be ignored,

which is an excellent approximation for most intent and purposes. Neglecting

also the final inter-ionic electrostatic interaction term, which is essential in total

energy calculations but reduces to a simple classical additive term within the

Born-Oppenheimer approximation, the initial problem of solving the electronic

structure for the entire crystalline solid is consequently simplified to the treat-

ment of the crystal electron cloud exclusively. The corresponding N -electron
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Schroedinger equation can be rewritten as:

[
N∑
i=1

(
− �

2me

∇2
i + Vion (ri)

)
+

1

2

i �=j∑
i,j

e2

4πε0|ri − rj|

]
ΨN (r1, σ1; r2, σ2; ....rN, σN)

= ENΨN (r1, σ1; r2, σ2; ....rN, σN)

(2.169)

where Vion(ri) = −
M∑
I=1

ZIe
2

4πε0|ri−RI| represents the combined ionic potential acting

on each electron, EN is the total electronic energy and ΨN (r1, σ1; r2, σ2; ....rN , σN)

is the N -electron wavefunction expressed in terms of the spatial (ri) and spin (σi)

quantum numbers for the ith electron in the material.

Historically, an important milestone for going beyond the independent-electron

approximation, embodied by the Sommerfeld free-electron model, and incorpo-

rating approximately the effect of inter-electron interactions in solids was the

development of the Hartree-Fock equations 1. Even though they were the first

technique which allowed for a neat separation between electron exchange and

correlation effects, in practice their treatment remains difficult and requires care-

ful further approximations. The need for more accurate, widely-applicable and

easy-to-implement methods for calculating the ground state properties of many-

body molecules and solid-state systems from first-principles, or “ab-initio”, while

still accounting for the effects of inter-electron exchange and correlation inter-

actions, provided an incentive for P. Hohenberg and W. Kohn to conceive the

current modern formulation of DFT in 1964 ?. In this pioneering work, the au-

thors demonstrated that the density n(r) of particles in the ground state of a

quantum many-body system can be assigned a special role and considered as a

1For an introduction to the mathematical formalism of Hartree-Fock theory, see for example
page 332 in Ref. ?.
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“fundamental” variable, and that all properties of the system under investiga-

tion, including the effects of interactions and correlations among the particles,

can be considered to be unique functionals 1 of this fundamental quantity. It

follows from this crucial conjecture that the ground state electron density can be

used as an effective replacement for the ground state many-body wavefunction

ΨG (r1, σ1; r2, σ2; ....rN , σN) appearing in Eq. 2.169, thus significantly simplifying

the scale and complexity of the problem from the full 3N degrees of freedom

for N electrons embodied by ΨG. This change of variables can be expressed

conceptually as follows:

ΨG = Ψ(r1, σ1; .....; ri, σi; ......; rN, σN)
DFT−→ n (r) =

〈
ΨG

∣∣∣∣∣
N∑
i=1

δ (r− ri)ΨG

〉
(2.170)

This reformulation of the many-body problem is encapsulated by two cardinal

theorems, known as Hohenberg-Kohn (HK) theorems, which together establish

the theoretical foundations of all modern formulations of DFT. Apart from en-

compassing the important role assigned to the ground state density in DFT men-

tioned previously, the HK theorems also provide insight in the relation between

the ground state density of a system of mutually-interacting electrons and any

general external potential Vext (r) acting upon it (for example, the Coulomb po-

tential due to the nuclei in the periodic crystal structure of a material). The HK

theorems, which will be stated here without proof 2, can be expressed as follows:

1. Theorem 1: For any system of interacting particles bathed in an external

1Familiarity with the mathematical concept of Functional is assumed in this report. For an
introduction to the theory of Funcionals and their applications in Calculus of Variations, the
reader is referred to Chapt. 22 in Ref ?.

2For a formal proof of the HK theorems, consult for example section 6.2 in Ref. ?.
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potential Vext (r), the potential Vext (r) is determined uniquely, except for a

constant, by the ground state particle density no(r).

Corollary 1: Since the hamiltonian of the system is thus fully determined,

except for a constant shift of the energy, it follows that the many-body wave-

functions for all states (ground and excited), and consequently all internal

properties of the system, are completely determined from the solution of the

corresponding Schroedinger Equation given only the ground state density.

2. Theorem 2: Any internal property of the system, including its total energy,

can be expressed as a unique functional of the density n(r), valid for any

external potential Vext (r). For any particular Vext (r) the exact ground state

energy of the system is the global minimum value of the functional of the

total energy E[n], and the density n(r) that minimizes the functional is the

exact ground state density no(r).

Corollary 2: The functional E[n] alone is sufficient to determine only the

exact ground state energy and density. In general, excited states of the

electrons must be determined by other means.

The logic behind the HK theorems is summarized schematically in Fig 2.23. The

challenge posed by the Hohenberg-Kohn theorems is how to make use of the

reformulation of many-body theory in terms of functionals of the density. Such

a functional for the total ground-state energy of the system can be written in

general as:

EN [n(r)] = TS [n(r)] + EHartree [n(r)] + EXC [n(r)] +

∫
d3rVext(r)n(r) + EII

(2.171)
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Figure 2.23: Flow diagram illustrating the one-to-one correspondence between
the external potential Vext (r) acting on the system of interacting electrons, its
ground state density no(r) and its set of eigenstates Ψi ({r}) , as demonstrated
by the first HK theorem. (Figure reproduced from Ref. ?)

where EII is the interaction energy of the nuclei among themselves, and T [n],

EHartree[n] and EXC [n] represent respectively the kinetic, classical Coulomb in-

teraction (Hartree) and Exchange-Correlation energies of the electron cloud, all

of which are internal properties of the electron system and are therefore express-

ible as functionals of the density according to the second HK theorem. At this

stage however we are still left with the problem of finding explicit forms for the

constituent functionals in Eq. 2.171. While on one hand there exists a simple

expression linking the Hartree potential energy to the density:

EHartree [n] =
1

2

∫
d3rd3r′

n (r)n (r′)
4πε0 |r− r′| (2.172)

this task is more problematic for the Kinetic energy term T [n], for which there
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is no known direct connection to the density, and for the Exchange-Correlation

energy functional EXC [n] = EX [n] + EC [n] incorporating all the complex many-

body exchange (EX [n]) and correlation (EC [n]) effects, which cannot be modeled

analytically.

A significant step forward from this impasse was accomplished by the seminal

work performed in 1965 by W. Kohn and L.J. Sham ?, which lead to the now

well-established Kohn-Sham (KS) approach to DFT . The defining Ansatz of the

KS formulation of DFT was to map the difficult interacting many-body system

obeying the Hamiltonian of Eq. 2.169 to a different fictitious auxiliary system of

non-interacting particles that can be solved more easily, with the condition that

its ground state density be equal to that of the original interacting system and

consequently that its internal physical properties be equivalent. This leads to the

relation between the actual and auxiliary systems depicted in Fig. 2.24. Even

though it has never been proven formally that this auxiliary system is capable

of reproducing precisely all the physical properties of the original interacting

problem, this basic assumption yields excellent approximations for the problems

of greatest practical interest, and in particular for ground-state calculations which

are by far the most widespread applications of DFT. Solution of the KS auxiliary

system for the ground state can be viewed as the problem of minimization of the

total ground state energy functional of Eq. 2.171 with respect to small variations

in the density δ(n(r, σ)). One of the major qualities of the KS approach is that

it allows the electronic density of the indepent-particle auxiliary system to be

expressed as a simple sum of the probability densities associated with each single-
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Figure 2.24: Schematic representation of the KS ansatz. The label “HKo” de-
notes the HK theorem applied to the non-interacting auxiliary system of elec-
trons. The connection in both directions between the two systems is established
by the arrow labeled “KS”, showing that in principle solution of the independent-
particle KS problem determines all properties of the original interacting system.
(Figure reproduced from Ref. ?)

particle wavefunction ψσ
i (r):

n (r) =
∑
σ

n(r, σ) =
∑
σ

Nσ∑
i=1

|ψσ
i (r)|2 (2.173)

The establishment of such a relation between density and wavefunctions allows

in turn the functional for the kinetic energy in Eq. 2.171 to be kept expressed in

terms of the single-particle orbitals, without therefore the need to find an explicit

dependence on the density:

Ts = − �
2

2me

∑
σ

Nσ∑
i=1

〈
ψσ
i

∣∣ ∇2ψσ
i

〉
= − �

2

2me

∑
σ

Nσ∑
i=1

|∇ψσ
i |2 (2.174)

Given that all other functionals of the density in Eq. 2.171 can now also be

expressed in terms of the independent-particle orbitals ψσ
i (r) via Eq. 2.173, the

problem of minimizing Eq. 2.171 to find the ground-state energy of the system

can be reformulated in terms of variations of the orbitals via the chain rule, which
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yields the following variational equation:

δEN

δψσ∗
i (r)

=
δTS

δψσ∗
i (r)

+

[
δEext

δn(r, σ)
+

δEHartree

δn(r, σ)
+

δEXC

δn(r, σ)

]
δn(r, σ)

δψσ∗
i (r)

= 0 (2.175)

subject to the orthonomalization constraint on each of the single-particle orbitals:

〈
ψσ
i

∣∣∣ ψσ′
j

〉
= δi,jδσ,σ′ (2.176)

Using expressions 2.174 and 2.173 for calculating the derivatives involving the

Kinetic Energy and the density:

δTS

δψσ∗
i (r)

= −1

2
∇2ψσ

i (r);
δnσ(r)

δψσ∗
i (r)

= ψσ
i (r) (2.177)

and the Lagrange multiplier method for constrained minimization 1, we obtain the

following set of Schroedinger-like equations, one for each of the N single-particle

orbitals in the auxiliary system:

(Hσ
KS − εσi )ψ

σ
i (r) = 0

{ψσ
i : i = 1, N}

(2.178)

where the Lagrange parameters εi represent the possible eigenvalues. It is im-

portant to stress that these eigenvalues do not correspond to the single-particle

energies as in a normal Schroedinger Equation, and in fact have no obvious physi-

cal meaning except for the highest one, which corresponds to the ionization energy

1An introduction to this mathematical technique is provided in section 5.9 in Ref. ?
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of the system. HKS on the other hand represents the effective KS Hamiltonian:

Hσ
KS(r) = −

�
2

2me

∇2 + V σ
KS(r)

where V σ
KS(r) =

δEext

δn (r, σ)
+

δEHartree

δn (r, σ)
+

δEXC

δn (r, σ)
= V σ

ext(r) + V σ
Hartree

(r) + V σ
XC

(r)

(2.179)

Equations 2.178 and 2.179, collectively referred to as the Kohn-Sham equations,

represent the culminating point of the entire KS formulation of DFT. By diag-

onalizing and solving the equations self-consistently (in practice by numerical

means) one can first compute all the single-particle KS eigenstates ψσ
i (r), and

from there the ground-state density and total ground-state energy of the original

interacting system from Equations 2.173 and 2.171 respectively, with an accuracy

limited only by the approximations in the exchange-correlation functional (given

that all other functionals in Eq. 2.171 can be computed exactly within the KS

approach) . In fact, the development and availability today of highly accurate

exchange-correlation functionals with a broad range of applications has been the

determining factor for elevating DFT to its current position as the most accu-

rate, computationally-efficient and widely used technique for ab-initio electronic

structure calculations in a wide range of atoms, molecules and condensed mat-

ter systems. The next section in this document is devoted to the description of

the approximations for this functional most entrenched in the Condensed-Matter

Physics community.
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2.6.2 The Local Density and Generalized Gradient ap-

proximations for the exchange-correlation energy func-

tional

Already in their seminal paper ?, Kohn and Sham pointed out that solids can

often be considered as close to the limit of the homogeneous electron gas. In

this limit, it is known that the effects of exchange and correlation are rather

local in character, and they proposed making the local density approximation

(LDA) (or more generally the local spin density approximation (LSDA), which

accounts also for the spins of the electrons in a spin-polarized system) in which

the exchange-correlation energy is simply an integral over all space, with the

exchange-correlation energy density εXC([n], r) at each point r assumed to be the

same as in a homogeneous electron gas of interacting electrons with the same

local density:

ELDA
XC [n] =

∫
d3rn(r)εhomXC (n(r)) =

∫
d3rn(r)

[
εhomX (n(r)) + εhomC (n(r))

]
(2.180)

The corresponding exchange-correlation potential appearing in the KS equations

is consequently given by:

V σ
XC(r) =

δELDA
XC [n]

δn(r, σ)
=

[
εhomXC + n

∂εhomXC

∂nσ

]
r,σ

(2.181)

The only information needed within the LDA approximation is therefore the

exchange-correlation energy of the homogeneous gas as a function of density.

Since the exchange energy of an homogeneous electron gas can be calculated
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analytically within Hartree-Fock theory, and is given by 1:

εhomX = −3

4

e2kF
π

= − 3e2

4πao
(kFao) (2.182)

where kF is the Fermi wavevector and ao the Bohr Radius, the LDA simply

boils down to fitting numerical correlation energies for the homogeneous gas,

for example by Monte Carlo total energy calculations ??. A variety of LDA

expressions for the correlation energy have been proposed with time, and the

most celebrated are summarized in Appendix B of Ref. ?. The LDA is expected

to give the best results for solids close to a homogeneous electron gas in which

the charge density is slowly varying (like a nearly-free-electron metal) and worst

for very inhomogeneous cases, like for the case of atoms where the density must

go continuously to zero outside the atom, or indeed in any general covalently-

bound solid. However, experience has proved the LDA to be a surprisingly good

approximation for a wide variety of solid-state systems.

The remarkable success of the LDA in most applications has stimulated ideas

for the development of various Generalized Gradient Approximations (GGAs)

???, with marked improvement over LDA in many cases. The first step beyond

the local approximation was the introduction of a functional of the magnitude

of the density gradient |∇nσ(r)| in addition to the value of n(r) at each point r,

which lead to the so-called Gradient Expansion Approximation (GEA). However,

the GEA was found to often yield worse results than the LDA due to the large

density gradients found in real materials, which cause the expansion to break

down. The GGA provided the solution by introducing functions that modify the

1A derivation of this expression can be found in Chapt. 17 of Ref. ?.
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behavior at large gradients in such a way as to preserve the desired properties

of the material under investigation. Within the the context of the GGA, it is

convenient to generalize the expression for the Exchange-correlation functional

given by Eq. 2.180 to include explicitly the dependence on the various orders of

the density gradient |∇mnσ(r)|:

EGGA
XC [n] =

∫
d3rn(r)εXC

(
n, |∇n| , ∣∣∇2n

∣∣ ...... |∇mn|)
≡

∫
d3rn(r)εhomX (n)FXC

(
n, |∇n| , ∣∣∇2n

∣∣ ...... |∇mn|) (2.183)

where FXC is a dimensionless function, known as the enhancement factor of the

exchange-correlation functional, and εhomx (n) is the exchange energy density of the

homogeneous electron gas given by Eq. 2.182. An expression for the exchange-

correlation potential appearing in the KS equations can also be found by calcu-

lating the change δEXC [n] to linear order in δn and δ∇n = ∇δn:

V σ
XC(r) =

δEGGA
XC [n]

δn(r, σ)
=

[
εXC + n

∂εXC

∂nσ
−∇

(
n
∂εXC

∂∇nσ

)]
r,σ

(2.184)

It is natural to work in terms of dimensionless reduced density gradients of

mth order that can be defined by:

sm =
|∇mn|

(2kF )
m n

(2.185)

With this notation, the lowest order terms in the expansion of the exchange part

FX and correlation part FC of FXC have been calculated analytically:

FX = 1 +
10

81
s21 +

146

2025
s22 + ...... (2.186)
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and

FC =
εLDA
C (n)

εLDA
X (n)

(
1− 0.219s21 + .....

)
(2.187)

where FC is expressed as a correction to the corresponding LDA expressions for

the exchange and correlation energy densities. One of the defining character-

istics of GGAs is that they lead to an exchange energy lower than their LDA

counterparts, since Fx � 1. The resulting reduction of the cohesive energy im-

proves markedly the agreement with experiment for atoms, molecules and solids,

and therefore constitutes a significant step forward over the LDA overbinding ??.

Numerous different forms have been proposed for the higher-order terms in the

expansions for FC and FX by choosing different physical conditions for s → ∞,

leading to very different behaviors in the region of large density gradients. Hence,

even if one form of GGA somehow gives the correct result for a certain physical

property while others fail, the same form is not necessarily superior for other

properties in which different physical conditions prevail.

2.6.3 Computational self-consistent solution of the Kohn-

Sham equations: the plane-wave pseudopotential

method

In order to solve in practice the eigenvalue problem presented by the KS equations

(2.178), the single-particle eigenstates ψσ
i (r) must be expanded in some orthog-

onal basis set. The simplest and most popular choice for this basis is to use

orthogonal plane-wave functions, under the so-called orthogonalized planewave
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(OPW) method ??? . These plane-waves can be expressed as 1:

ψi
k(r) =

∑
G

cnk(G)ei(k+G)·r (2.188)

where k is the crystal momentum and the sum is over all Bravais lattice vectors

G of the reciprocal lattice of the system under investigation. This discrete basis

set can in theory be made infinite in size by application of periodic boundary

conditions to the problem, but in practice a finite number of plane-wave basis

states is normally sufficient to converge systematically most physical quantities

of interest in typical computational problems. As explained in Fig. 2.25, in order

to truncate the basis set, the sum term in Eq. (2.188) is limited to a set of

reciprocal lattice vectors encompassed by a sphere with radius defined by the

cutoff kinetic energy, Ecut:

�
2 |k2 +G2|

2m
� Ecut (2.189)

so that the entire set of plane-waves can be defined by this maximum kinetic

energy component. More recently, the OPW method has been reformulated and

adapted to modern techniques for calculation of total energy, forces and stress

under the so-callled Projector-Augmented Wave (PAW) method ?, which intro-

duces projectors and auxiliary localized functions for a more efficient solution of

the KS eigenvalue problem.

The choice of plane waves as basis set however requires to be operated in con-

junction with the implementation of pseudopotentials ??? in order to limit the

1This form for the plane-wave functions can be shown to be the most general solution
satisfying Bloch’s Theorem for periodic boundary conditions in a crystal lattice.
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Figure 2.25: Truncation of the plane wave basis states expansion at a sphere of
radius Ecut in reciprocal space. The blue dots represent the discrete reciprocal
lattice vectors available for the expansion. (Figure reproduced from Ref. ?.)

size of this expansion to computationally-feasible proportions for the solution of

realistic systems. Pseudopotentials allow for a neat separation between the treat-

ment of core electrons in an atom, that is those electrons which are tightly-bound

to the nucleus and are therefore not involved in the interactions between atoms,

and the valence electrons, which on the other hand are more loosely bound and

consequently dictate the chemical properties of the material. As a direct con-

sequence of the orthogonality requirement on the single-electron wavefunctions,

the superposition of the valence and core electron wavefunctions results in a

many-electron wavefunction exhibiting strong-oscillations in the region near the

nucleus, as illustrated in Fig. 2.26. These oscillations become inevitably quite

difficult to model using a plane-wave basis set, requiring many plane-waves for

an accurate description. It therefore becomes convenient to ignore altogether

the region in the immediate surroundings of the nucleus, and this is indeed the

approach adopted by the pseudopotential approximation, where only the valence
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electrons of atoms are explicitly considered and the screening effects of the in-

ner core electrons contained within the cutoff nuclear radius rc indicated in Fig.

2.26 are integrated within a new effective ionic potential (the pseudopotential).

The remaining smoother variation of the all-electron valence wavefunction in the

outskirts of the nuclear region beyond rc can be modeled accurately with a much

more restricted size for plane-wave basis set, with the consequent sharp gain in

computational efficiency. The pseudopotential approach turns out to be an ex-

cellent approximation for practical calculations since, as mentioned previously,

this region remains almost completely shielded from all neighboring interactions,

and the oscillations are consequently of very little consequence for the electronic

structure of the solid.

When constructing a new pseudopotential, the main goals that need to be

attained are threefold: firstly, the pseudodpotential should be as soft as possible,

meaning that it should allow expansion of the valence pseudo-wavefunctions using

as few plane-waves as possible. Secondly, it should be as transferrable as possible,

in the sense that a pseudopotential generated for a given atomic configuration

should accurately reproduce others. This helps to ensure that its application in

solid-state systems, where the overall crystal potential is inevitably different from

an atomic potential, be capable of reliable results. Finally, the pseudo-charge

density, that is the charge density constructed using the pseudo-wavefunctions,

should reproduce the valence charge density of the atom under consideration as

accurately as possible. The concept of norm-conservation in pseudopotential

theory ? provided the first systematic solution for reconciling these conflicting

goals. Within norm-conserving pseudopotentials, the pseudo-wavefunctions are

designed and constructed to be equivalent to the actual valence wavefunctions
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Figure 2.26: Schematic representation of the concept of pseudopotential. Ψ labels
the true all-electron wavefunction, while Ψpseudo the all-electron pseudowavefunc-
tion which results from subsituting the true bare Coulombic nuclear potential Z/r
with the modified pseudopotential Vpseudo incorporating the screening effects of
the inner core electrons. The smooth variation of Ψ beyond the core radius rc im-
plies that an accurate emulation of the atomic interaction with Ψpseudo requires
only a limited plane-wave basis expansion, thus making the pseudopotential a
very efficient approximation for most atomic systems. (Figure reproduced from
Ref. ?.)

outside the core radius rc. Inside rc on the other hand, the pseudo-wavefunctions

are allowed to differ from the true wavefuntions, but their norm is constrained to

be the same.

A radical departure from the concept of norm-coservation in pseudopotentials

was eventually proposed by Vanderbilt and co-workers ???. In this approach,

which became to be known as the ultra-soft pseudopotential method, the pseudo-

wavefunctions are required to be equal to the all-electron wavefunctions outside

rc as with norm-conserving pseudopotentials, but inside rc they are allowed to
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be as soft as possible, which is accomplished by removing the norm-conservation

constraint. Even though the use of non-normalized wavefunctions complicates

the solution of the KS equations, this approach offers the major advantage of

greatly reducing the required plane-wave cutoff without sacrificing the accuracy

of the calculation, which explains its popularity for use in large-scale calculations.

The computational work presented in this report was no exception.

One final aspect of the computational implementation of DFT worth mention-

ing is the techniques used for determining the charge density and other quantities

which can be extracted from DFT calculations such as total energy and atomic

forces. The evaluation of all these quantities require summations to be performed

over the occupied states, which for crystals translate into integrals over the Bril-

louin zone. Exploiting the symmetry properties of the crystal, this integration can

then be limited to the symmetry-irreducible wedge of the zone (IBZ). In practice,

these integrals are calculated numerically using wavefunctions and eigenvalues at

a finite number of k-points in the electronic bandstructure of the IBZ. This leads

to the so-called special points method for Brillouin-zone integration ???, the most

commonly used approach for this type of calculations, in which integrations are

performed as weighted sums over a grid of representative, or special, k-points

chosen to yield optimum convergence for smoothly varying functions of k. This

application of the special points method however proves problematic for the case

of metals, where electronic bands intersect the Fermi energy Ef . This leads to

discontinuities in the electronic occupation numbers and therefore in the inte-

grands at the Fermi surface, thus yielding slower convergence for a given number

of k-points. This difficulty can be overcome by the introduction of an artificial

temperature-induced and convergence-accelerating broadening of the Fermi sur-

163



face corresponding to a smoother electron distribution function than the original

step function, such as a finite-temperature Fermi distribution. Care must how-

ever be taken to ensure that the introduction of such broadening factor does not

affect physical quantities of interest.

Once equipped with all the above-mentioned computational models and tech-

niques, a solution to the set of KS equations minimizing the total energy func-

tional of Eq. (2.171) can be found numerically according to the iterative scheme

portrayed in Fig. 2.27. Any valid solution must be self-consistent, meaning that

it must be subject to the constraint that the effective KS potential V σ
KS(r) and the

resulting electron density n(r, σ) be consistent with one another, as highlighted

in the figure. In practice this is done by successively looping over changes in

V σ
KS(r) and n(r, σ) until the self-consistent agreement is reached.
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Figure 2.27: Flow chart illustrating the self-consistent iteration for solving the
KS equations. (Figure reproduced from Ref. ?)
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