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Crystal Structures and 
Crystal Geometry

I t is possible to map the surfaces of conducting solids at the atomic level using an
instrument called the scanning tunneling microscope (STM). The STM allows

the observation and manipulation of adsorbate molecules and chemical reactions
on the atomic scale. This is accomplished by manipulating and monitoring a small
amount of current passing through the extremely small STM tip (single-atom
tungsten nanotip). The current is amplified and used to measure the size of the gap

(© IBM Corporation.)
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(b)(a)

c

b

Figure 3.1
(a) Space lattice of ideal crystalline solid. (b) Unit cell showing lattice
constants.

1www.sljus.lu.se/stm/NonTech.html

between the nanotip and the atoms on the surface. The chapter-opening image is an
example of the resolution achieved using the STM technology.

Scientists discovered a new method for confining electrons to artificial struc-
tures at the nanometer lengthscale. Surface state electrons on Cu(111) were con-
fined to closed structures (corrals) defined by barriers built from Fe adatoms. The
barriers were assembled by individually positioning Fe adatoms using the tip of
a low temperature scanning tunneling microscope (STM). A circular corral of ra-
dius 71.3 Angstrom was constructed in this way out of 48 Fe adatoms.1 ■

3.1 THE SPACE LATTICE AND UNIT CELLS
The physical structure of solid materials of engineering importance depends
mainly on the arrangements of the atoms, ions, or molecules that make up the
solid and the bonding forces between them. If the atoms or ions of a solid are
arranged in a pattern that repeats itself in three dimensions, they form a solid that
is said to have a crystal structure and is referred to as a crystalline solid or crys-
talline material. Examples of crystalline materials are metals, alloys, and some
ceramic materials.

Atomic arrangements in crystalline solids can be described by referring the
atoms to the points of intersection of a network of lines in three dimensions. Such
a network is called a space lattice (Fig. 3.1a), and it can be described as an
infinite three-dimensional array of points. Each point in the space lattice has
identical surroundings. In an ideal crystal the grouping of lattice points about any
given point are identical with the grouping about any other lattice point in the
crystal lattice. Each space lattice can thus be described by specifying the atom
positions in a repeating unit cell, such as the one heavily outlined in Fig. 3.1a.
The size and shape of the unit cell can be described by three lattice vectors a, b,
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3.2 Crystal Systems and Bravais Lattices 69

2August Bravais (1811–1863). French crystallographer who derived the 14 possible arrangements of
points in space.

and c, originating from one corner of the unit cell (Fig. 3.1b). The axial lengths
a, b, and c and the interaxial angles α, β , and γ are the lattice constants of the
unit cell.

3.2 CRYSTAL SYSTEMS AND
BRAVAIS LATTICES

By assigning specific values for axial lengths and interaxial angles, unit cells of
different types can be constructed. Crystallographers have shown that only seven
different types of unit cells are necessary to create all point lattices. These crys-
tal systems are listed in Table 3.1.

Many of the seven crystal systems have variations of the basic unit cell. A. J.
Bravais2 showed that 14 standard unit cells could describe all possible lattice
networks. These Bravais lattices are illustrated in Fig. 3.2. There are four basic
types of unit cells: (1) simple, (2) body-centered, (3) face-centered, and (4) base-
centered.

In the cubic system there are three types of unit cells: simple cubic, body-
centered cubic, and face-centered cubic. In the orthorhombic system all four

Table 3.1 Classification of Space Lattices by Crystal System

Crystal system Axial lengths and interaxial angles Space lattice

Cubic Three equal axes at right angles Simple cubic
a = b = c, α = β = γ = 90◦ Body-centered cubic

Face-centered cubic
Tetragonal Three axes at right angles, two equal Simple tetragonal

a = b �= c, α = β = γ = 90◦ Body-centered tetragonal
Orthorhombic Three unequal axes at right angles Simple orthorhombic

a �= b �= c, α = β = γ = 90◦ Body-centered orthorhombic
Base-centered orthorhombic
Face-centered orthorhombic

Rhombohedral Three equal axes, equally inclined Simple rhombohedral
a = b = c, α = β = γ �= 90◦

Hexagonal Two equal axes at 120◦ , third axis Simple hexagonal
at right angles
a = b �= c, α = β = 90◦ ,
γ = 120◦

Monoclinic Three unequal axes, one pair not Simple monoclinic
at right angles Base-centered monoclinic
a �= b �= c, α = γ = 90◦ �= β

Triclinic Three unequal axes, unequally Simple triclinic
inclined and none at right angles
a �= b �= c, α �= β �= γ �= 90◦
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c
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c

b

c

b

Monoclinic

c �

TriclinicOrthorhombic
Hexagonal

Cubic

Figure 3.2
The 14 Bravais conventional unit cells grouped according to crystal system. The dots
indicate lattice points that, when located on faces or at corners, are shared by other
identical lattice unit cells.
(After W. G. Moffatt, G. W. Pearsall, and J. Wulff, “The Structure and Properties of Materials,” vol. I: “Structure,”
Wiley, 1964, p. 47.)
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(b) (c)(a)

Figure 3.3
Principal metal crystal structure unit cells: (a) body-centered cubic, 
(b) face-centered cubic, (c) hexagonal close-packed.

31 nanometer = 10−9 meter.

types are represented. In the tetragonal system there are only two: simple and
body-centered. The face-centered tetragonal unit cell appears to be missing but
can be constructed from four body-centered tetragonal unit cells. The monoclinic
system has simple and base-centered unit cells, and the rhombohedral, hexago-
nal, and triclinic systems have only one simple type of unit cell.

3.3 PRINCIPAL METALLIC CRYSTAL
STRUCTURES

In this chapter the principal crystal structures of elemental metals will be dis-
cussed in detail. In Chap. 10 the principal ionic and covalent crystal structures
that occur in ceramic materials will be treated.

Most elemental metals (about 90 percent) crystallize upon solidification into
three densely packed crystal structures: body-centered cubic (BCC) (Fig. 3.3a),
face-centered cubic (FCC) (Fig. 3.3b) and hexagonal close-packed (HCP)
(Fig. 3.3c). The HCP structure is a denser modification of the simple hexagonal
crystal structure shown in Fig. 3.2. Most metals crystallize in these dense-packed
structures because energy is released as the atoms come closer together and bond
more tightly with each other. Thus, the densely packed structures are in lower
and more stable energy arrangements.

The extremely small size of the unit cells of crystalline metals that are shown
in Fig. 3.3 should be emphasized. The cube side of the unit cell of body-centered
cubic iron, for example, at room temperature is equal to 0.287 × 10−9 m, or
0.287 nanometer (nm).3 Therefore, if unit cells of pure iron are lined up side by
side, in 1 mm there will be

1 mm × 1 unit cell

0.287 nm × 10−6 mm/nm
= 3.48 × 106 unit cells!
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72 C H A P T E R 3 Crystal Structures and Crystal Geometry

Let us now examine in detail the arrangement of the atoms in the three prin-
cipal crystal structure unit cells. Although an approximation, we shall consider
atoms in these crystal structures to be hard spheres. The distance between the
atoms (interatomic distance) in crystal structures can be determined experimen-
tally by x-ray diffraction analysis.4 For example, the interatomic distance be-
tween two aluminum atoms in a piece of pure aluminum at 20◦C is 0.2862 nm.
The radius of the aluminum atom in the aluminum metal is assumed to be half the
interatomic distance, or 0.143 nm. The atomic radii of selected metals are listed
in Tables 3.2 to 3.4.

3.3.1 Body-Centered Cubic (BCC) Crystal Structure

First, consider the atomic-site unit cell for the BCC crystal structure shown in
Fig. 3.4a. In this unit cell the solid spheres represent the centers where atoms are
located and clearly indicate their relative positions. If we represent the atoms in
this cell as hard spheres, then the unit cell appears as shown in Fig. 3.4b. In this

4Some of the principles of x-ray diffraction analysis will be studied in Sec. 3.11.

Table 3.2 Selected Metals That Have the BCC Crystal Structure at Room Temperature
(20◦C) and Their Lattice Constants and Atomic Radii

Metal Lattice constant a (nm) Atomic radius R* (nm)

Chromium 0.289 0.125
Iron 0.287 0.124
Molybdenum 0.315 0.136
Potassium 0.533 0.231
Sodium 0.429 0.186
Tantalum 0.330 0.143
Tungsten 0.316 0.137
Vanadium 0.304 0.132

∗Calculated from lattice constants by using Eq. (3.1), R = √
3a/4.

Table 3.3 Selected Metals That Have the FCC Crystal Structure at Room Temperature
(20◦C) and Their Lattice Constants and Atomic Radii

Metal Lattice constant a (nm) Atomic radius R* (nm)

Aluminum 0.405 0.143
Copper 0.3615 0.128
Gold 0.408 0.144
Lead 0.495 0.175
Nickel 0.352 0.125
Platinum 0.393 0.139
Silver 0.409 0.144

∗Calculated from lattice constants by using Eq. (3.3), R = √
2a/4.
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3.3 Principal Metallic Crystal Structures 73

(a) (b) (c)

Figure 3.4
BCC unit cells: (a) atomic-site unit cell, (b) hard-sphere unit cell, and
(c) isolated unit cell.

a

4R
3
––
a

√3
–

√√ a � 4R

√2a

Figure 3.5
BCC unit cell showing
relationship between the
lattice constant a and
the atomic radius R.

unit cell we see that the central atom is surrounded by eight nearest neighbors
and is said to have a coordination number of 8.

If we isolate a single hard-sphere unit cell, we obtain the model shown in
Fig. 3.4c. Each of these cells has the equivalent of two atoms per unit cell. One
complete atom is located at the center of the unit cell, and an eighth of a sphere
is located at each corner of the cell, making the equivalent of another atom. Thus
there is a total of 1 (at the center) + 8 × 1

8 (at the corners) = 2 atoms per unit
cell. The atoms in the BCC unit cell contact each other across the cube diagonal,
as indicated in Fig. 3.5, so that the relationship between the length of the cube
side a and the atomic radius R is

√
3a = 4R or a = 4R√

3
(3.1)

Table 3.4 Selected Metals That Have the HCP Crystal Structure at Room Temperature
(20◦C) and Their Lattice Constants, Atomic Radii, and c/a Ratios

Lattice constants (nm)
Atomic % deviation

Metal a c radius R (nm) c/a ratio from ideality

Cadmium 0.2973 0.5618 0.149 1.890 +15.7
Zinc 0.2665 0.4947 0.133 1.856 +13.6
Ideal HCP 1.633 0
Magnesium 0.3209 0.5209 0.160 1.623 −0.66
Cobalt 0.2507 0.4069 0.125 1.623 −0.66
Zirconium 0.3231 0.5148 0.160 1.593 −2.45
Titanium 0.2950 0.4683 0.147 1.587 −2.81
Beryllium 0.2286 0.3584 0.113 1.568 −3.98
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74 C H A P T E R 3 Crystal Structures and Crystal Geometry

EXAMPLE 
PROBLEM 3.2

Iron at 20◦C is BCC with atoms of atomic radius 0.124 nm. Calculate the lattice
constant a for the cube edge of the iron unit cell.

■ Solution
From Fig. 3.5 it is seen that the atoms in the BCC unit cell touch across the cube
diagonals. Thus, if a is the length of the cube edge, then

√
3a = 4R (3.1)

where R is the radius of the iron atom. Therefore

a = 4R√
3

= 4(0.124 nm)√
3

= 0.2864 nm �

If the atoms in the BCC unit cell are considered to be spherical, an atomic
packing factor (APF) can be calculated by using the equation

Atomic packing factor (APF) = volume of atoms in unit cell

volume of unit cell
(3.2)

Using this equation, the APF for the BCC unit cell (Fig. 3.3a) is calculated to be
68 percent (see Example Problem 3.2). That is, 68 percent of the volume of the
BCC unit cell is occupied by atoms and the remaining 32 percent is empty space.
The BCC crystal structure is not a close-packed structure since the atoms could
be packed closer together. Many metals such as iron, chromium, tungsten,
molybdenum, and vanadium have the BCC crystal structure at room tempera-
ture. Table 3.2 lists the lattice constants and atomic radii of selected BCC metals.

Calculate the atomic packing factor (APF) for the BCC unit cell, assuming the atoms
to be hard spheres.

■ Solution

APF = volume of atoms in BCC unit cell

volume of BCC unit cell
(3.2)

Since there are two atoms per BCC unit cell, the volume of atoms in the unit cell of
radius R is

Vatoms = (2)
(

4
3
π R3

) = 8.373 R3

The volume of the BCC unit cell is

Vunit cell = a3

where a is the lattice constant. The relationship between a and R is obtained from
Fig. 3.5, which shows that the atoms in the BCC unit cell touch each other across the
cubic diagonal. Thus

√
3a = 4R or a = 4R√

3
(3.1)

EXAMPLE 
PROBLEM 3.1
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a
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√2
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√√ a

Figure 3.7
FCC unit cell showing
relationship between the
lattice constant a and atomic
radius R. Since the atoms
touch across the face
diagonals, .�2a = 4R

(a) (b) (c)

Figure 3.6
FCC unit cells: (a) atomic-site unit cell, (b) hard-sphere unit cell, 
and (c) isolated unit cell.

Thus

Vunit cell = a3 = 12.32 R3

The atomic packing factor for the BCC unit cell is, therefore,

APF = Vatoms /unit cell

Vunit cell
= 8.373 R3

12.32 R3
= 0.68 �

3.3.2 Face-Centered Cubic (FCC) Crystal Structure

Consider next the FCC lattice-point unit cell of Fig. 3.6a. In this unit cell there is
one lattice point at each corner of the cube and one at the center of each cube
face. The hard-sphere model of Fig. 3.6b indicates that the atoms in the FCC
crystal structure are packed as close together as possible. The APF for this close-
packed structure is 0.74 as compared to 0.68 for the BCC structure, which is not
close-packed.

The FCC unit cell as shown in Fig. 3.6c has the equivalent of four atoms per
unit cell. The eight corner octants account for one atom (8 × 1

8 = 1), and the six
half-atoms on the cube faces contribute another three atoms, making a total of
four atoms per unit cell. The atoms in the FCC unit cell contact each other across
the cubic face diagonal, as indicated in Fig. 3.7, so that the relationship between
the length of the cube side a and the atomic radius R is

√
2a = 4R or a = 4R√

2
(3.3)

The APF for the FCC crystal structure is 0.74, which is greater than the
0.68 factor for the BCC structure. The APF of 0.74 is for the closest packing
possible of “spherical atoms.” Many metals such as aluminum, copper, lead,
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76 C H A P T E R 3 Crystal Structures and Crystal Geometry

nickel, and iron at elevated temperatures (912 to 1394◦C) crystallize with the
FCC crystal structure. Table 3.3 lists the lattice constants and atomic radii for
some selected FCC metals.

3.3.3 Hexagonal Close-Packed (HCP) Crystal Structure

The third common metallic crystal structure is the HCP structure shown in
Fig. 3.8. Metals do not crystallize into the simple hexagonal crystal structure
shown in Fig. 3.2 because the APF is too low. The atoms can attain a lower
energy and a more stable condition by forming the HCP structure of Fig. 3.8. The
APF of the HCP crystal structure is 0.74, the same as that for the FCC crystal
structure since in both structures the atoms are packed as tightly as possible.
In both the HCP and FCC crystal structures each atom is surrounded by 12
other atoms, and thus both structures have a coordination number of 12. The
differences in the atomic packing in FCC and HCP crystal structures will be dis-
cussed in Sec. 3.8.

The isolated HCP unit cell is shown in Fig. 3.8c and has the equivalent of six
atoms per unit cell. Three atoms form a triangle in the middle layer, as indicated
by the atomic sites in Fig. 3.8a. There are six 1

6 -atom sections on both the top
and bottom layers, making an equivalent of two more atoms (2 × 6 × 1

6 = 2).
Finally, there is one-half of an atom in the center of both the top and bottom lay-
ers, making the equivalent of one more atom. The total number of atoms in the
HCP crystal structure unit cell is thus 3 + 2 + 1 = 6.

The ratio of the height c of the hexagonal prism of the HCP crystal structure
to its basal side a is called the c/a ratio (Fig. 3.8a). The c/a ratio for an ideal HCP
crystal structure consisting of uniform spheres packed as tightly together as
possible is 1.633. Table 3.4 lists some important HCP metals and their c/a ratios.
Of the metals listed, cadmium and zinc have c/a ratios higher than ideality, which

(a) (c)(b)

Figure 3.8
HCP unit cells: (a) atomic-site unit cell, (b) hard-sphere unit cell, and 
(c) isolated unit cell.
[(b) and (c) After F. M. Miller, “Chemistry: Structure and Dynamics,” McGraw-Hill, 
1984, p. 296.]

smi02334_ch03.qxd  4/21/03  3:38 PM  Page 76
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EXAMPLE
PROBLEM 3.3

indicates that the atoms in these structures are slightly elongated along the c axis
of the HCP unit cell. The metals magnesium, cobalt, zirconium, titanium, and
beryllium have c/a ratios less than the ideal ratio. Therefore, in these metals the
atoms are slightly compressed in the direction along the c axis. Thus, for the HCP
metals listed in Table 3.4 there is a certain amount of deviation from the ideal
hard-sphere model.

Calculate the volume of the zinc crystal structure unit cell by using the following data:
pure zinc has the HCP crystal structure with lattice constants a = 0.2665 nm and
c = 0.4947 nm.

■ Solution
The volume of the zinc HCP unit cell can be obtained by determining the area of the
base of the unit cell and then multiplying this by its height (Fig. 3.9).

The area of the base of the unit cell is area ABDEFG of Fig. 3.9a and b. This total
area consists of the areas of six equilateral triangles of area ABC of Fig. 3.9b. From
Fig. 3.9c,

Area of triangle A BC = 1
2
(base)(height )

= 1
2
(a)(a sin 60◦) = 1

2
a2 sin 60◦

From Fig. 3.9b,
Total area of HCP base = (6)

(
1
2
a2 sin 60◦)

= 3a2 sin 60◦

From Fig. 3.9a,

Volume of zinc HCP unit cell = (3a2 sin 60◦)(c)

= (3)(0.2665 nm)2(0.8660)(0.4947 nm)

= 0.0913 nm3 �

A B

CC
D

EF

G

a

C
D

EF

G

A Ba

c

(a) (b) (c)

A B
60°60°

a

h
a

CC

Figure 3.9
Diagrams for calculating the volume of an HCP unit cell. (a) HCP unit cell.
(b) Base of HCP unit cell. (c) Triangle ABC removed from base of unit cell.
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Figure 3.10
(a) Rectangular x, y, and z axes for locating atom positions in cubic
unit cells. (b) Atom positions in a BCC unit cell.

3.4 ATOM POSITIONS IN CUBIC UNIT CELLS
To locate atom positions in cubic unit cells, we use rectangular x, y, and z axes.
In crystallography the positive x axis is usually the direction coming out of the
paper, the positive y axis is the direction to the right of the paper, and the positive
z axis is the direction to the top (Fig. 3.10). Negative directions are opposite to
those just described.

Atom positions in unit cells are located by using unit distances along the x,
y, and z axes, as indicated in Fig. 3.10a. For example, the position coordinates for
the atoms in the BCC unit cell are shown in Fig. 3.10b. The atom positions for
the eight corner atoms of the BCC unit cell are

(0, 0, 0) (1, 0, 0) (0, 1, 0) (0, 0, 1)
(1, 1, 1) (1, 1, 0) (1, 0, 1) (0, 1, 1)

The center atom in the BCC unit cell has the position coordinates ( 1
2 , 1

2 , 1
2 ). For

simplicity sometimes only two atom positions in the BCC unit cell are specified
which are (0, 0, 0) and ( 1

2 , 1
2 , 1

2 ). The remaining atom positions of the BCC unit
cell are assumed to be understood. In the same way the atom positions in the
FCC unit cell can be located.

3.5 DIRECTIONS IN CUBIC UNIT CELLS
Often it is necessary to refer to specific directions in crystal lattices. This is
especially important for metals and alloys with properties that vary with crystal-
lographic orientation. For cubic crystals the crystallographic direction indices
are the vector components of the direction resolved along each of the coordinate
axes and reduced to the smallest integers.
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Figure 3.11
Some directions in cubic unit cells.

To diagrammatically indicate a direction in a cubic unit cell, we draw a di-
rection vector from an origin, which is usually a corner of the cubic cell, until it
emerges from the cube surface (Fig. 3.11). The position coordinates of the unit
cell where the direction vector emerges from the cube surface after being con-
verted to integers are the direction indices. The direction indices are enclosed by
square brackets with no separating commas.

For example, the position coordinates of the direction vector OR in
Fig. 3.11a where it emerges from the cube surface are (1, 0, 0), and so the direc-
tion indices for the direction vector OR are [100]. The position coordinates of the
direction vector OS (Fig. 3.11a) are (1, 1, 0), and so the direction indices for OS
are [110]. The position coordinates for the direction vector OT (Fig. 3.11b) are
(1, 1, 1), and so the direction indices of OT are [111].

The position coordinates of the direction vector OM (Fig. 3.11c) are (1, 1
2 , 0),

and since the direction vectors must be integers, these position coordinates must
be multiplied by 2 to obtain integers. Thus, the direction indices of OM become
2(1, 1

2 , 0) = [210] . The position coordinates of the vector ON (Fig. 3.11d) are
(−1, −1, 0). A negative direction index is written with a bar over the index. Thus,
the direction indices for the vector ON are [1̄1̄0]. Note that to draw the direction
ON inside the cube the origin of the direction vector had to be moved to the front
lower-right corner of the unit cube (Fig. 3.11d). Further examples of cubic di-
rection vectors are given in Example Problem 3.4.

The letters u, v, w are used in a general sense for the direction indices in the
x, y, and z directions, respectively, and are written as [uvw]. It is also important
to note that all parallel direction vectors have the same direction indices.

Directions are said to be crystallographically equivalent if the atom spacing
along each direction is the same. For example, the following cubic edge direc-
tions are crystallographic equivalent directions:

[100], [010], [001], [01̄0], [001̄], [1̄00] ≡ 〈100〉
Equivalent directions are called indices of a family or form. The notation 〈100〉
is used to indicate cubic edge directions collectively. Other directions of a form
are the cubic body diagonals 〈111〉 and the cubic face diagonals 〈110〉.
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EXAMPLE 
PROBLEM 3.4

Draw the following direction vectors in cubic unit cells:

(a) [100] and [110]
(b) [112]
(c) [1̄10]
(d) [3̄21̄]

■ Solution
(a) The position coordinates for the [100] direction are (1, 0, 0) (Fig. 3.12a). The

position coordinates for the [110] direction are (1, 1, 0) (Fig. 3.12a).
(b) The position coordinates for the [112] direction are obtained by dividing the

direction indices by 2 so that they will lie within the unit cube. Thus they are
( 1

2 , 1
2 , 1) (Fig. 3.12b).

(c) The position coordinates for the [1̄10] direction are (−1, 1, 0) (Fig. 3.12c).
Note that the origin for the direction vector must be moved to the lower-left
front corner of the cube.

(d) The position coordinates for the [3̄21̄] direction are obtained by first dividing
all the indices by 3, the largest index. This gives −1, 2

3 , − 1
3 for the position

coordinates of the exit point of the direction [3̄21̄], which are shown in 
Fig. 3.12d.

x

z

y

x

z

y

x

z

z

y
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Note new origin

Note new origin

[1̄10]
[3̄21̄]

[112]

O

O

1–
3

O

(a) (b)

(c) (d)

y

1
2

1
2

1
2

1
2

2
3

Figure 3.12
Direction vectors in cubic unit cells.
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EXAMPLE
PROBLEM 3.5

Determine the direction indices of the cubic direction shown in Fig. EP3.5a.

■ Solution
Parallel directions have the same direction indices, and so we move the direction vec-
tor in a parallel manner until its tail reaches the nearest corner of the cube, still keep-
ing the vector within the cube. Thus, in this case, the upper-left front corner becomes
the new origin for the direction vector (Fig. EP3.5b). We can now determine the posi-
tion coordinates where the direction vector leaves the unit cube. These are x = −1,
y = +1, and z = − 1

6 . The position coordinates of the direction where it leaves the
unit cube are thus (−1, +1, − 1

6 ). The direction indices for this direction are, after
clearing the fraction 6x , (−1, +1, − 1

6 ), or [6̄61̄].

EXAMPLE
PROBLEM 3.6

Determine the direction indices of the cubic direction between the position coordi-
nates ( 3

4 , 0, 1
4 ) and ( 1

4 , 1
2 , 1

2 ).

■ Solution
First we locate the origin and termination points of the direction vector in a unit cube,
as shown in Fig. EP3.6. The fraction vector components for this direction are

x = − (
3
4

− 1
4

) = − 1
2

y = (
1
2

− 0
) = 1

2

z = (
1
2

− 1
4

) = 1
4

Thus, the vector direction has fractional vector components of − 1
2 , 1

2 , 1
4 . The direction in-

dices will be in the same ratio as their fractional components. By multiplying the fraction
vector components by 4, we obtain [2̄21] for the direction indices of this vector direction.

3
4

1
4������

Origin for position
coordinates

z

y

x

Figure EP3.6

Figure EP3.5

1–
3

1–
2

1–

1–
2

(0, 0, 0)

New
origin

1–
31–

2

zz

yy

xx

(a) (b)
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5William Hallowes Miller (1801–1880). English crystallographer who published a “Treatise on
Crystallography” in 1839, using crystallographic reference axes that were parallel to the crystal edges
and using reciprocal indices.

3.6 MILLER INDICES FOR
CRYSTALLOGRAPHIC PLANES
IN CUBIC UNIT CELLS

Sometimes it is necessary to refer to specific lattice planes of atoms within a
crystal structure, or it may be of interest to know the crystallographic orientation
of a plane or group of planes in a crystal lattice. To identify crystal planes in
cubic crystal structures, the Miller notation system5 is used. The Miller indices of
a crystal plane are defined as the reciprocals of the fractional intercepts (with
fractions cleared) that the plane makes with the crystallographic x, y, and z axes
of the three nonparallel edges of the cubic unit cell. The cube edges of the unit
cell represent unit lengths, and the intercepts of the lattice planes are measured in
terms of these unit lengths.

The procedure for determining the Miller indices for a cubic crystal plane is
as follows:

1. Choose a plane that does not pass through the origin at (0, 0, 0).
2. Determine the intercepts of the plane in terms of the crystallographic x, y,

and z axes for a unit cube. These intercepts may be fractions.
3. Form the reciprocals of these intercepts.
4. Clear fractions and determine the smallest set of whole numbers that are in

the same ratio as the intercepts. These whole numbers are the Miller
indices of the crystallographic plane and are enclosed in parentheses
without the use of commas. The notation (hkl) is used to indicate Miller
indices in a general sense, where h, k, and l are the Miller indices of a cubic
crystal plane for the x, y, and z axes, respectively.

Figure 3.13 shows three of the most important crystallographic planes of
cubic crystal structures. Let us first consider the shaded crystal plane in Fig. 3.13a,
which has the intercepts 1, ∞, ∞ for the x, y, and z axes, respectively. We take
the reciprocals of these intercepts to obtain the Miller indices, which are therefore
1, 0, 0. Since these numbers do not involve fractions, the Miller indices for this
plane are (100), which is read as the one-zero-zero plane. Next let us consider the
second plane shown in Fig. 3.13b. The intercepts of this plane are 1, 1, ∞. Since
the reciprocals of these numbers are 1, 1, 0, which do not involve fractions, the
Miller indices of this plane are (110). Finally, the third plane (Fig. 3.13c) has
the intercepts 1, 1, 1, which give the Miller indices (111) for this plane.

Consider now the cubic crystal plane shown in Fig. 3.14 which has the in-
tercepts 1

3 , 2
3 , 1. The reciprocals of these intercepts are 3, 3

2 , 1. Since fractional in-
tercepts are not allowed, these fractional intercepts must be multiplied by 2 to
clear the 3

2 fraction. Thus, the reciprocal intercepts become 6, 3, 2 and the Miller
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(632)

O
y

z

x

1
3

2
3

Figure 3.14
Cubic crystal plane (632), which
has fractional intercepts.

x

z

x

z

x

z

(100)

(a)

(110)

(b)

(111)

(c)

yyy

Figure 3.13
Miller indices of some important cubic crystal planes: (a) (100), (b) (110), and (c) (111).

indices are (632). Further examples of cubic crystal planes are shown in Exam-
ple Problem 3.7.

If the crystal plane being considered passes through the origin so that one or
more intercepts are zero, the plane must be moved to an equivalent position in
the same unit cell and the plane must remain parallel to the original plane. This
is possible because all equispaced parallel planes are indicated by the same
Miller indices.

If sets of equivalent lattice planes are related by the symmetry of the crystal
system, they are called planes of a family or form, and the indices of one plane of
the family are enclosed in braces as {hkl} to represent the indices of a family of
symmetrical planes. For example, the Miller indices of the cubic surface planes
(100), (010), and (001) are designated collectively as a family or form by the
notation {100}.
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EXAMPLE 
PROBLEM 3.7

x

z

yy

z

x

y

z

x

z

x

(101)

O

(a)

O

(221)

1
2

1
2

(c)

O

(11̄0)
Note new

origin

(b)

(d )

y
O

(110)

Draw the following crystallographic planes in cubic unit cells:

(a) (101) (b) (11̄0) (c) (221)
(d) Draw a (110) plane in a BCC atomic-site unit cell, and list the position

coordinates of the atoms whose centers are intersected by this plane.

■ Solutions

(a) First determine the reciprocals of the Miller indices of the (101) plane. These
are 1, ∞, 1. The (101) plane must pass through a unit cube at intercepts x = 1
and z = 1 and be parallel to the y axis.

(b) First determine the reciprocals of the Miller indices of the (11̄0) plane. These
are 1, −1, ∞. The (11̄0) plane must pass through a unit cube at intercepts x = 1
and y = −1 and be parallel to the z axis. Note that the origin of axes must be
moved to the lower-right back side of the cube.

(c) First determine the reciprocals of the Miller indices of the (221) plane. These
are 1

2 , 1
2 , 1. The (221) plane must pass through a unit cube at intercepts x = 1

2 ,
y = 1

2 , and z = 1.
(d ) Atom positions whose centers are intersected by the (110) plane are (1, 0, 0), (0,

1, 0), (1, 0, 1), (0, 1, 1), and ( 1
2 , 1

2 , 1
2 ). These positions are indicated by the solid

circles.

Figure EP3.7
Various important cubic crystal planes.
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d110

d110

a

A

B

O

C

a

x

y

(110) plane 1

(110) plane 2

(110) plane 3

Figure 3.15
Top view of cubic unit cell showing the distance
between (110) crystal planes, d110.

EXAMPLE
PROBLEM 3.8

An important relationship for the cubic system, and only the cubic system, is
that the direction indices of a direction perpendicular to a crystal plane are the
same as the Miller indices of that plane. For example, the [100] direction is per-
pendicular to the (100) crystal plane.

In cubic crystal structures the interplanar spacing between two closest par-
allel planes with the same Miller indices is designated dhkl , where h, k, and l are
the Miller indices of the planes. This spacing represents the distance from a se-
lected origin containing one plane and another parallel plane with the same in-
dices that is closest to it. For example, the distance between (110) planes 1 and 2,
d110, in Fig. 3.15 is AB. Also, the distance between (110) planes 2 and 3 is d110

and is length BC in Fig. 3.15. From simple geometry, it can be shown that for
cubic crystal structures

dhkl = a√
h2 + k2 + l2

(3.4)

where dhkl = interplanar spacing between parallel closest planes with
Miller indices h, k, and l

a = lattice constant (edge of unit cube)
h, k, l = Miller indices of cubic planes being considered

Determine the Miller indices of the cubic crystallographic plane shown in Fig. EP3.8a.

■ Solution
First, transpose the plane parallel to the z axis 1

4 unit to the right along the y axis as
shown in Fig. EP3.8b so that the plane intersects the x axis at a unit distance from the
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EXAMPLE 
PROBLEM 3.9

z

y

D

A
B

C E (origin for plane)

Origin for
position
coordinates

x

1
2�1, 1, �

1
2� 2� , 1, 0�

�1,   , 0�1
4   

1
4�   , 1, �3

4   

new origin located at the lower-right back corner of the cube. The new intercepts
of the transposed plane with the coordinate axes are now (+1, − 5

12 , ∞). Next, we
take the reciprocals of these intercepts to give (1, − 12

5 , 0). Finally, we clear the 12
5 frac-

tion to obtain (5120) for the Miller indices of this plane.

Determine the Miller indices of the cubic crystal plane that intersects the position co-
ordinates (1, 1

4 , 0), (1, 1, 1
2 ), ( 3

4 , 1, 1
4 ), and all coordinate axes.

■ Solution
First, we locate the three position coordinates as indicated in Fig. EP3.9 at A, B, and
C. Next, we join A and B and extend AB to D and then join A and C. Finally, we join
A to C to complete plane ACD. The origin for this plane in the cube can be chosen at
E, which gives axial intercepts for plane ACD at x = − 1

2 , y = − 3
4 , and z = 1

2 . The
reciprocals of these axial intercepts are −2, − 4

3 , and 2. Multiplying these intercepts by
3 clears the fraction, giving Miller indices for the plane of (6̄4̄6).

New
origin

1
3

� �2
3

1
4

5
12� �z

y

z

y

xx
3
4

(a) (b)

Figure EP3.8

Figure EP3.9

smi02334_ch03.qxd  4/21/03  3:38 PM  Page 86
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EXAMPLE
PROBLEM 3.10

Copper has an FCC crystal structure and a unit cell with a lattice constant of 0.361 nm.
What is its interplanar spacing d220?

■ Solution

dhkl = a√
h2 + k2 + l2

= 0.361 nm√
(2)2 + (2)2 + (0)2

= 0.128 nm �

3.7 CRYSTALLOGRAPHIC PLANES AND
DIRECTIONS IN HEXAGONAL UNIT CELLS

3.7.1 Indices for Crystal Planes in HCP Unit Cells

Crystal planes in HCP unit cells are commonly identified by using four indices
instead of three. The HCP crystal plane indices, called Miller-Bravais indices,
are denoted by the letters h, k, i, and l and are enclosed in parentheses as (hkil).
These four-digit hexagonal indices are based on a coordinate system with four
axes, as shown in Fig. 3.16 in an HCP unit cell. There are three basal axes, a1,
a2, and a3, which make 120◦ with each other. The fourth axis or c axis is the
vertical axis located at the center of the unit cell. The a unit of measurement
along the a1, a2, and a3 axes is the distance between the atoms along these axes
and is indicated in Fig. 3.16. The unit of measurement along the c axis is the
height of the unit cell. The reciprocals of the intercepts that a crystal plane makes
with the a1, a2, and a3 axes give the h, k, and i indices, while the reciprocal of the
intercept with the c axis gives the l index.

c

a

�a2

�a3

�a1

�a2

�a3

�a1

�c

Figure 3.16
The four coordinate axes (a1, a2, a3,
and c) of the HCP crystal structure
unit cell.
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(b)

c

E

B C

F

A
D

H

G

a3

�a2 a2

a1
�a3

�a1

Intercept
is �1

Intercept
is �1

Intercept
is �1

Intercept
is �1

(011̄0)

(11̄00)
(101̄0)

(a)

c

a3

�a2 a2

a1
�a3

�a1

(0001)

Basal Planes The basal planes of the HCP unit cell are very important planes
for this unit cell and are indicated in Fig. 3.17a. Since the basal plane on the top
of the HCP unit cell in Fig. 3.17a is parallel to the a1, a2, and a3 axes, the
intercepts of this plane with these axes will all be infinite. Thus, a1 = ∞,
a2 = ∞, and a3 = ∞. The c axis, however, is unity since the top basal plane
intersects the c axis at unit distance. Taking the reciprocals of these intercepts
gives the Miller-Bravais indices for the HCP basal plane. Thus h = 0, k = 0,
i = 0, and l = 1. The HCP basal plane is, therefore, a zero-zero-zero-one or
(0001) plane.

Prism Planes Using the same method, the intercepts of the front prism plane
(ABCD) of Fig. 3.17b are a1 = +1, a2 = ∞, a3 = −1, and c = ∞. Taking
the reciprocals of these intercepts gives h = 1, k = 0, i = −1, and l = 0, or the
(101̄0) plane. Similarly, the ABEF prism plane of Fig. 3.17b has the indices
(11̄00) and the DCGH plane the indices (011̄0). All HCP prism planes can be
identified collectively as the {101̄0} family of planes.

Sometimes HCP planes are identified only by three indices (hkl) since
h + k = −i . However, the (hkil) indices are used more commonly because they
reveal the hexagonal symmetry of the HCP unit cell.

3.7.2 Direction Indices in HCP Unit Cells6

Directions in HCP unit cells are also usually indicated by four indices u, v, t,
and w enclosed by square brackets as [uvtw]. The u, v, and t indices are lattice

6The topic of direction indices for hexagonal unit cells is not normally presented in an introductory
course in materials but is included here for advanced students.

Figure 3.17
Miller-Bravais indices of hexagonal crystal planes: (a) basal planes, and (b) prism
planes.

smi02334_ch03.qxd  4/21/03  3:38 PM  Page 88



3.7 Crystallographic Planes and Directions in Hexagonal Unit Cells 89

vectors in the a1 , a2 , and a3 directions, respectively (Fig. 3.16), and the w
index is a lattice vector in the c direction. To maintain uniformity for both
HCP indices for planes and directions, it has been agreed that u � v � �t for
directions.

Let us now determine the Miller-Bravais hexagonal indices for the direc-
tions a1, a2, and a3, which are the positive basal axes of the hexagonal unit cell.
The a1 direction indices are given in Fig. 3.18a, the a2 direction indices in
Fig. 3.18b and the a3 direction indices in Fig. 3.18c. If we need to indicate a c
direction also for the a3 direction, this is shown in Fig. 3.18d. Fig. 3.18e summa-
rizes the positive and negative directions on the upper basal plane of the simple
hexagonal crystal structure.

�a1

�a3

�a2 a1

�a3

�a2
[1̄21̄0]

(b)

�a1

�a3

�a2 a1

�a3

�a2

[21̄1̄0]

(a)

�a1

�a

�a2 a1

�a3

�a2

[1̄1̄20]

(c)

[1̄1̄21]

[1̄1̄

[1̄ 1̄0]

(d)

�a

c

�a3

�a2 �a1

�a2

��aa1

[21̄1̄

[1̄1̄20]

(e)

�a2

�a1

�a3

�a2

�a3

�a1

[1̄ 0]0

Figure 3.18
Miller-Bravais hexagonal crystal structure direction indices for principal directions: (a) +a1 axis direction
on basal plane, (b) +a2 axis direction on basal plane, (c) +a3 direction axis on basal plane, and (d ) +a3

direction axis incorporating c axis. (e) Positive and negative Miller-Bravais directions are indicated in
simple hexagonal crystal structure on upper basal plane.
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3.8 COMPARISON OF FCC, HCP, AND BCC
CRYSTAL STRUCTURES

3.8.1 Face-Centered Cubic and Hexagonal Close-Packed
Crystal Structures

As previously pointed out, both the HCP and FCC crystal structures are close-
packed structures. That is, their atoms, which are considered approximate
“spheres,” are packed together as closely as possible so that an atomic packing
factor of 0.74 is attained.7 The (111) planes of the FCC crystal structure shown in
Fig. 3.19a have the identical packing arrangement as the (0001) planes of the
HCP crystal structure shown in Fig. 3.19b. However, the three-dimensional FCC
and HCP crystal structures are not identical because there is a difference in the
stacking arrangement of their atomic planes, which can best be described by con-
sidering the stacking of hard spheres representing atoms. As a useful analogy,
one can imagine the stacking of planes of equal-sized marbles on top of each
other, minimizing the space between the marbles.

Consider first a plane of close-packed atoms designated the A plane, as
shown in Fig. 3.20a. Note that there are two different types of empty spaces or

90 C H A P T E R 3 Crystal Structures and Crystal Geometry

(111)
plane

(0001) plane

(a) (b)

Figure 3.19
Comparison of the (a) FCC crystal structure showing the
close-packed (111) planes, and (b) the HCP crystal structure
showing the close-packed (0001) planes.
(After W. G. Moffatt, G. W. Pearsall, and J. Wulff, “The Structure and
Properties of Materials,” vol. I: “Structure,” Wiley, 1964, p. 51.)

7As pointed out in Sec. 3.3, the atoms in the HCP structure deviate to varying degrees from ideality. In
some HCP metals the atoms are elongated along the c axis, and in other cases they are compressed along
the c axis (see Table 3.4).

smi02334_ch03.qxd  4/21/03  3:38 PM  Page 90



voids between the atoms. The voids pointing to the top of the page are designated
a voids and those pointing to the bottom of the page, b voids. A second plane
of atoms can be placed over the a or b voids and the same three-dimensional
structure will be produced. Let us place plane B over the a voids, as shown in
Fig. 3.20b. Now if a third plane of atoms is placed over plane B to form a closest-
packed structure, it is possible to form two different close-packed structures. One
possibility is to place the atoms of the third plane in the b voids of the B plane.
Then the atoms of this third plane will lie directly over those of the A plane and
thus can be designated another A plane (Fig. 3.20c). If subsequent planes of
atoms are placed in this same alternating stacking arrangement, then the stacking
sequence of the three-dimensional structure produced can be denoted by
ABABAB. . . . Such a stacking sequence leads to the HCP crystal structure
(Fig. 3.19b).

The second possibility for forming a simple close-packed structure is to
place the third plane in the a voids of plane B (Fig. 3.20d ). This third plane is
designated the C plane since its atoms do not lie directly above those of the B
plane or the A plane. The stacking sequence in this close-packed structure is thus
designated ABCABCABC . . . and leads to the FCC structure shown in Fig. 3.19a.

3.8 Comparison of FCC, HCP, and BCC Crystal Structures 91

A plane

A plane

B plane
A plane

B plane
C plane

(a) (b)

(c) (d)

A plane
B plane
a void
b void

A plane

a void
b void

Figure 3.20
Formation of the HCP and FCC crystal structures by the stacking
of atomic planes. (a) A plane showing the a and b voids. (b) B plane
placed in a voids of plane A. (c) Third plane placed in b voids of B
plane, making another A plane and forming the HCP crystal
structure. (d) Third plane placed in the a voids of B plane, making
a new C plane and forming the FCC crystal structure.
(Adapted from P. Ander and A. J. Sonnessa, “Principles of Chemistry,” Macmillan, 
1965, p. 661.)
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a

�2
–

a

[11̄1] [1̄11]

(100)
plane

(110)
plane

(a) (b)

Figure 3.21
BCC crystal structure showing (a) the (100) plane and (b) a section of the (110) plane.
Note that this is not a close-packed structure but that diagonals are close-packed
directions.
[(a) After W. G. Moffatt, G. W. Pearsall, and J. Wulff, “The Structure and Properties of Materials,” vol. I:
“Structure,” Wiley, 1964, p. 51.]

3.8.2 Body-Centered Cubic Crystal Structure

The BCC structure is not a close-packed structure and hence does not have close-
packed planes like the {111} planes in the FCC structure and the {0001} planes in
the HCP structure. The most densely packed planes in the BCC structure are the
{110} family of planes of which the (110) plane is shown in Fig. 3.21b. However,
the atoms in the BCC structure do have close-packed directions along the cube
diagonals, which are the 〈111〉 directions.

3.9 VOLUME, PLANAR, AND LINEAR DENSITY
UNIT-CELL CALCULATIONS

3.9.1 Volume Density

Using the hard-sphere atomic model for the crystal structure unit cell of a metal
and a value for the atomic radius of the metal obtained from x-ray diffraction
analysis, a value for the volume density of a metal can be obtained by using the
equation

Volume density of metal = ρυ = mass/unit cell

volume/unit cell
(3.5)

In Example Problem 3.11 a value of 8.98 Mg/m3 (8.98 g/cm3) is obtained for the
density of copper. The handbook experimental value for the density of copper is
8.96 Mg/m3 (8.96 g/cm3). The slightly lower density of the experimental value
could be attributed to the absence of atoms at some atomic sites (vacancies),
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3.9 Volume, Planar, and Linear Density Unit-Cell Calculations 93

EXAMPLE
PROBLEM 3.11

line defects, and mismatch where grains meet (grain boundaries). These crys-
talline defects are discussed in Chap. 4. Another cause of the discrepancy could
also be due to the atoms not being perfect spheres.

Copper has an FCC crystal structure and an atomic radius of 0.1278 nm. Assuming the
atoms to be hard spheres that touch each other along the face diagonals of the FCC
unit cell as shown in Fig. 3.7, calculate a theoretical value for the density of copper in
megagrams per cubic meter. The atomic mass of copper is 63.54 g/mol.

■ Solution
For the FCC unit cell, 

√
2a = 4R , where a is the lattice constant of the unit cell and R

is the atomic radius of the copper atom. Thus

a = 4R√
2

= (4)(0.1278 nm)√
2

= 0.361 nm

Volume density of copper = ρυ = mass/unit cell

volume/unit cell
(3.5)

In the FCC unit cell there are four atoms/unit cell. Each copper atom has a mass of
(63.54 g/mol)/(6.02 × 1023 atoms/mol). Thus the mass m of Cu atoms in the FCC unit
cell is

m = (4 atoms )(63.54 g/mol)

6.02 × 1023 atoms/ mol

(
10−6 Mg

g

)
= 4.22 × 10−28 Mg

The volume V of the Cu unit cell is

V = a3 =
(

0.361 nm × 10−9 m

nm

)3

= 4.70 × 10−29 m3

Thus the density of copper is

ρυ = m

V
= 4.22 × 10−28 Mg

4.70 × 10−29 m3
= 8.98 Mg/m3 (8.98 g/cm3) �

3.9.2 Planar Atomic Density

Sometimes it is important to determine the atomic densities on various crystal
planes. To do this a quantity called the planar atomic density is calculated by
using the relationship

Planar atomic density = ρp =
equiv. no. of atoms whose centers

are intersected by selected area
selected area

(3.6)

For convenience the area of a plane that intersects a unit cell is usually used in
these calculations, as shown, for example, in Fig. 3.22 for the (110) plane in a
BCC unit cell. In order for an atom area to be counted in this calculation, the
plane of interest must intersect the center of an atom. In Example Problem 3.12
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z

x

y

aa (110)

(a) (b)

�2
–

a

�2
–

a

Figure 3.22
(a) A BCC atomic-site unit cell showing a shaded (110) plane. 
(b) Areas of atoms in BCC unit cell cut by the (110) plane.

EXAMPLE
PROBLEM 3.12

the (110) plane intersects the centers of five atoms, but the equivalent of only two
atoms is counted since only one-quarter of each of the four corner atoms is
included in the area inside the unit cell.

Calculate the planar atomic density ρp on the (110) plane of the α iron BCC lattice in
atoms per square millimeter. The lattice constant of α iron is 0.287 nm.

■ Solution

ρp = equiv. no. of atoms whose centers are intersected by selected area

selected area
(3.6)

The equivalent number of atoms intersected by the (110) plane in terms of the surface
area inside the BCC unit cell is shown in Fig. 3.22 and is

1 atom at center + 4 × 1
4

atoms at four corners of plane = 2 atoms

The area intersected by the (110) plane inside the unit cell (selected area) is

(
√

2a)(a) =
√

2a2

Thus the planar atomic density is

ρp = 2 atoms√
2(0.287 nm)2

= 17.2 atoms

nm2

= 17.2 atoms

nm2
× 1012 nm2

mm2

= 1.72 × 1013 atoms/mm2 �
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EXAMPLE
PROBLEM 3.13

3.9.3 Linear Atomic Density

Sometimes it is important to determine the atomic densities in various directions
in crystal structures. To do this a quantity called the linear atomic density is cal-
culated by using the relationship

Linear atomic density = ρl =
no. of atomic diam. intersected by selected

length of line in direction of interest
selected length of line

(3.7)

Example Problem 3.13 shows how the linear atomic density can be calculated in
the [110] direction in a pure copper crystal lattice.

Calculate the linear atomic density ρl in the [110] direction in the copper crystal lat-
tice in atoms per millimeter. Copper is FCC and has a lattice constant of 0.361 nm.

■ Solution
The atoms whose centers the [110] direction intersects are shown in Fig. 3.23. We
shall select the length of the line to be the length of the face diagonal of the FCC unit
cell, which is 

√
2a . The number of atomic diameters intersected by this length of line

are 1
2

+ 1 + 1
2

= 2 atoms. Thus using Eq. 3.7, the linear atomic density is

ρl = 2 atoms√
2a

= 2 atoms√
2(0.361 nm)

= 3.92 atoms

nm

= 3.92 atoms

nm
× 106 nm

mm

= 3.92 × 106 atoms/mm �

z

x

y
O

a

[110]

Figure 3.23
Diagram for calculating the
atomic linear density in the [110]
direction in an FCC unit cell.
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Figure 3.24
Allotropic crystalline forms of
iron over temperature ranges
at atmospheric pressure 

3.10 POLYMORPHISM OR ALLOTROPY
Many elements and compounds exist in more than one crystalline form under
different conditions of temperature and pressure. This phenomenon is termed
polymorphism, or allotropy. Many industrially important metals such as iron,
titanium, and cobalt undergo allotropic transformations at elevated temperatures
at atmospheric pressure. Table 3.5 lists some selected metals that show allotropic
transformations and the structure changes that occur.

Iron exists in both BCC and FCC crystal structures over the temperature
range from room temperature to its melting point at 1539◦C, as shown in
Fig. 3.24. Alpha (α) iron exists from −273 to 912◦C and has the BCC crystal
structure. Gamma (γ ) iron exists from 912 to 1394◦C and has the FCC crystal

Table 3.5 Allotropic Crystalline Forms of Some Metals

Crystal structure At other
Metal at room temperature temperatures

Ca FCC BCC (> 447◦C)
Co HCP FCC (> 427◦C)
Hf HCP BCC (> 1742◦C)
Fe BCC FCC (912–1394◦C)

BCC (> 1394◦C)
Li BCC HCP (< −193◦C)
Na BCC HCP (< −233◦C)
Tl HCP BCC (> 234◦C)
Ti HCP BCC (> 883◦C)
Y HCP BCC (> 1481◦C)
Zr HCP BCC (> 872◦C)
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3.11 Crystal Structure Analysis 97

EXAMPLE
PROBLEM 3.14

structure. Delta (δ) iron exists from 1394 to 1539◦C, which is the melting point
of iron. The crystal structure of δ iron is also BCC but with a larger lattice con-
stant than α iron.

Calculate the theoretical volume change accompanying a polymorphic transformation
in a pure metal from the FCC to BCC crystal structure. Assume the hard-sphere atomic
model and that there is no change in atomic volume before and after the transformation.

■ Solution
In the FCC crystal structure unit cell, the atoms are in contact along the face diagonal
of the unit cell, as shown in Fig. 3.7. Hence

√
2a = 4R or a = 4R√

2
(3.3)

In the BCC crystal structure unit cell, the atoms are in contact along the body di-
agonal of the unit cell as shown in Fig. 3.5. Hence

√
3a = 4R or a = 4R√

3
(3.1)

The volume per atom for the FCC crystal lattice, since it has four atoms per unit
cell, is

VFCC = a3

4
=

(
4R√

2

)3 (
1

4

)
= 5.66R3

The volume per atom for the BCC crystal lattice, since it has two atoms per unit
cell, is

VBCC = a3

2
=

(
4R√

3

)3 (
1

2

)
= 6.16R3

The change in volume associated with the transformation from the FCC to BCC crys-
tal structure, assuming no change in atomic radius, is

�V

VFCC
= VBCC − VFCC

VFCC

=
(

6.16 R3 − 5.66 R3

5.66 R3

)
100% = +8.8% �

3.11 CRYSTAL STRUCTURE ANALYSIS
Our present knowledge of crystal structures has been obtained mainly by x-ray
diffraction techniques that use x-rays about the same wavelength as the distance
between crystal lattice planes. However, before discussing the manner in which
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To transformer

Figure 3.25
Schematic diagram of the cross section of a sealed-off filament x-ray tube.
(After B. D. Cullity, “Elements of X-Ray Diffraction,” 2d ed., Addison-Wesley, 1978, p. 23.)

x-rays are diffracted in crystals, let us consider how x-rays are produced for
experimental purposes.

3.11.1 X-Ray Sources

X-rays used for diffraction are electromagnetic waves with wavelengths in the
range 0.05 to 0.25 nm (0.5 to 2.5 Å). By comparison, the wavelength of visible
light is of the order of 600 nm (6000 Å). In order to produce x-rays for diffrac-
tion purposes, a voltage of about 35 kV is necessary and is applied between a
cathode and an anode target metal, both of which are contained in a vacuum, as
shown in Fig. 3.25. When the tungsten filament of the cathode is heated, elec-
trons are released by thermionic emission and accelerated through the vacuum
by the large voltage difference between the cathode and anode, thereby gaining
kinetic energy. When the electrons strike the target metal (e.g., molybdenum), x-
rays are given off. However, most of the kinetic energy (about 98 percent) is con-
verted into heat, so the target metal must be cooled externally.

The x-ray spectrum emitted at 35 kV using a molybdenum target is shown in
Fig. 3.26. The spectrum shows continuous x-ray radiation in the wavelength
range from about 0.2 to 1.4 Å (0.02 to 0.14 nm) and two spikes of characteristic
radiation that are designated the Kα and Kβ lines. The wavelengths of the Kα and
Kβ lines are characteristic for an element. For molybdenum, the Kα line occurs
at a wavelength of about 0.7 Å (0.07 nm). The origin of the characteristic radia-
tion is explained as follows. First, K electrons (electrons in the n = 1 shell) are
knocked out of the atom by highly energetic electrons bombarding the target,
leaving excited atoms. Next, some electrons in higher shells (that is, n = 2 or 3)
drop down to lower energy levels to replace the lost K electrons, emitting energy
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Figure 3.26
X-ray emission spectrum produced when
molybdenum metal is used as the target metal
in an x-ray tube operating at 35 kV.
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Figure 3.27
Energy levels of electrons in
molybdenum showing the origin of Kα
and Kβ radiation.

of a characteristic wavelength. The transition of electrons from the L (n = 2)
shell to the K (n = 1) shell creates energy of the wavelength of the Kα line, as
indicated in Fig. 3.27.

3.11.2 X-Ray Diffraction

Since the wavelengths of some x-rays are about equal to the distance between
planes of atoms in crystalline solids, reinforced diffraction peaks of radiation of
varying intensities can be produced when a beam of x-rays strikes a crystalline
solid. However, before considering the application of x-ray diffraction tech-
niques to crystal structure analysis, let us examine the geometric conditions nec-
essary to produce diffracted or reinforced beams of reflected x-rays.

Consider a monochromatic (single-wavelength) beam of x-rays to be inci-
dent on a crystal, as shown in Fig. 3.28. For simplification let us allow the crys-
tal planes of atomic scattering centers to be replaced by crystal planes that act as
mirrors in reflecting the incident x-ray beam. In Fig. 3.28 the horizontal lines
represent a set of parallel crystal planes with Miller indices (hkl). When an inci-
dent beam of monochromatic x-rays of wavelength λ strikes this set of planes at
an angle such that the wave patterns of the beam leaving the various planes are
not in phase, no reinforced beam will be produced (Fig. 3.28a). Thus destructive
interference occurs. If the reflected wave patterns of the beam leaving the various
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planes are in phase, then reinforcement of the beam or constructive interference
occurs (Fig. 3.28b).

Let us now consider incident x-rays 1 and 2 as indicated in Fig. 3.28c. For
these rays to be in phase, the extra distance of travel of ray 2 is equal to
MP � PN, which must be an integral number of wavelengths λ. Thus

nλ = MP + PN (3.8)

100 C H A P T E R 3 Crystal Structures and Crystal Geometry
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Figure 3.28
The reflection of an x-ray beam by the (hkl ) planes
of a crystal. (a) No reflected beam is produced at an
arbitrary angle of incidence. (b) At the Bragg angle
θ, the reflected rays are in phase and reinforce one
another. (c) Similar to (b) except that the wave
representation has been omitted.
(After A. G. Guy and J. J. Hren, “Elements of Physical
Metallurgy,” 3d ed., Addison-Wesley, 1974, p. 201.)
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3.11 Crystal Structure Analysis 101

8William Henry Bragg (1862–1942). English physicist who worked in x-ray crystallography.

EXAMPLE
PROBLEM 3.15

where n = 1, 2, 3, . . . and is called the order of the diffraction. Since both MP
and PN equal dhkl sin θ , where dhkl is the interplanar spacing of the crystal planes
of indices (hkl), the condition for constructive interference (i.e., the production
of a diffraction peak of intense radiation) must be

nλ = 2dhkl sin θ (3.9)

This equation, known as Bragg’s law,8 gives the relationship among the angular
positions of the reinforced diffracted beams in terms of the wavelength λ of the
incoming x-ray radiation and of the interplanar spacings dhkl of the crystal
planes. In most cases, the first order of diffraction where n = 1 is used, and so for
this case Bragg’s law takes the form

λ = 2dhkl sin θ (3.10)

A sample of BCC iron was placed in an x-ray diffractometer using incoming x-rays
with a wavelength λ = 0.1541 nm. Diffraction from the {110} planes was obtained at
2θ = 44.704◦ . Calculate a value for the lattice constant a of BCC iron. (Assume first-
order diffraction with n = 1.)

■ Solution

2θ = 44.704◦ θ = 22.35◦

λ = 2dhkl sin θ

d110 = λ

2 sin θ
= 0.1541 nm

2(sin 22.35◦)

= 0.1541 nm

2(0.3803)
= 0.2026 nm

(3.10)

Rearranging Eq. 3.4 gives

a = dhkl

√
h2 + k2 + l2

Thus

a(Fe) = d110

√
12 + 12 + 02

= (0.2026 nm)(1.414) = 0.287 nm �

3.11.3 X-Ray Diffraction Analysis of Crystal Structures

The Powder Method of X-Ray Diffraction Analysis The most commonly
used x-ray diffraction technique is the powder method. In this technique a
powdered specimen is utilized so that there will be a random orientation of many
crystals to ensure that some of the particles will be oriented in the x-ray beam to
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102 C H A P T E R 3 Crystal Structures and Crystal Geometry

Figure 3.29
An x-ray diffractometer (with x-radiation shields removed).
(Philips Electronic Instruments, Inc.)

9A goniometer is an instrument for measuring angles.

satisfy the diffraction conditions of Bragg’s law. Modern x-ray crystal analysis
uses an x-ray diffractometer that has a radiation counter to detect the angle and
intensity of the diffracted beam (Fig. 3.29). A recorder automatically plots the
intensity of the diffracted beam as the counter moves on a goniometer9 circle
(Fig. 3.30) that is in synchronization with the specimen over a range of 2θ

values. Figure 3.31 shows an x-ray diffraction recorder chart for the intensity of
the diffracted beam versus the diffraction angles 2θ for a powdered pure-metal
specimen. In this way both the angles of the diffracted beams and their intensities
can be recorded at one time. Sometimes a powder camera with an enclosed

smi02334_ch03.qxd  4/21/03  3:38 PM  Page 102



3.11 Crystal Structure Analysis 103

filmstrip is used instead of the diffractometer, but this method is much slower
and in most cases less convenient.

Diffraction Conditions for Cubic Unit Cells X-ray diffraction techniques
enable the structures of crystalline solids to be determined. The interpretation of
x-ray diffraction data for most crystalline substances is complex and beyond the
scope of this book, and so only the simple case of diffraction in pure cubic metals
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Figure 3.30
Schematic illustration of the diffractometer method of crystal analysis and of the conditions
necessary for diffraction.
(After A. G. Guy, “Essentials of Materials Science,” McGraw-Hill, 1976.)
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Figure 3.31
Record of the diffraction angles for a tungsten sample obtained by the
use of a diffractometer with copper radiation.
(After A. G. Guy and J. J. Hren, “Elements of Physical Metallurgy,” 3d ed., 
Addison-Wesley, 1974, p. 208.)
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will be considered. The analysis of x-ray diffraction data for cubic unit cells can
be simplified by combining Eq. 3.4,

dhkl = a√
h2 + k2 + l2

with the Bragg equation λ = 2d sin θ, giving

λ = 2a sin θ√
h2 + k2 + l2

(3.11)

This equation can be used along with x-ray diffraction data to determine if a
cubic crystal structure is body-centered or face-centered cubic. The rest of this
subsection will describe how this is done.

To use Eq. 3.11 for diffraction analysis, we must know which crystal planes
are the diffracting planes for each type of crystal structure. For the simple cubic
lattice, reflections from all (hkl) planes are possible. However, for the BCC struc-
ture diffraction occurs only on planes whose Miller indices when added together
(h + k + l ) total to an even number (Table 3.6). Thus, for the BCC crystal struc-
ture the principal diffracting planes are {110}, {200}, {211}, etc., which are listed
in Table 3.7. In the case of the FCC crystal structure, the principal diffracting
planes are those whose Miller indices are either all even or all odd (zero is con-

104 C H A P T E R 3 Crystal Structures and Crystal Geometry

Table 3.6 Rules for Determining the Diffracting {hkl} Planes in Cubic Crystals

Bravais lattice Reflections present Reflections absent

BCC (h + k + l) = even (h + k + l) = odd
FCC (h, k, l) all odd or all even (h, k, l) not all odd or all even

Table 3.7 Miller Indices of the Diffracting Planes for BCC and FCC Lattices

Cubic
planes Sum
{hkl} h2 + k2 + l2 �[h2 + k2 + l2] FCC BCC

{100} 12 + 02 + 02 1
{110} 12 + 12 + 02 2 · · · 110
{111} 12 + 12 + 12 3 111
{200} 22 + 02 + 02 4 200 200
{210} 22 + 12 + 02 5
{211} 22 + 12 + 12 6 · · · 211
· · · 7

{220} 22 + 22 + 02 8 220 220
{221} 22 + 22 + 12 9
{310} 32 + 12 + 02 10 · · · 310

Cubic
diffracting

planes {hkl}
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3.11 Crystal Structure Analysis 105

sidered even). Thus, for the FCC crystal structure the diffracting planes are
{111}, {200}, {220}, etc., which are listed in Table 3.7.

Interpreting Experimental X-Ray Diffraction Data for Metals with Cubic
Crystal Structures We can use x-ray diffractometer data to determine crystal
structures. A simple case to illustrate how this analysis can be used is to
distinguish between the BCC and FCC crystal structures of a cubic metal. Let us
assume that we have a metal with either a BCC or an FCC crystal structure and
that we can identify the principal diffracting planes and their corresponding 2θ

values, as indicated for the metal tungsten in Fig. 3.3.
By squaring both sides of Eq. 3.11 and solving for sin2 θ , we obtain

sin2 θ = λ2(h2 + k2 + l2)

4a2
(3.12)

From x-ray diffraction data we can obtain experimental values of 2θ for a series
of principal diffracting {hkl} planes. Since the wavelength of the incoming radi-
ation and the lattice constant a are both constants, we can eliminate these quan-
tities by forming the ratio of two sin2 θ values as

sin2 θA

sin2 θB

= h2
A + k2

A + l2
A

h2
B + k2

B + l2
B

(3.13)

where θA and θB are two diffracting angles associated with the principal diffract-
ing planes {h Ak AlA} and {h BkBlB}, respectively.

Using Eq. 3.13 and the Miller indices of the first two sets of principal dif-
fracting planes listed in Table 3.7 for BCC and FCC crystal structures, we can
determine values for the sin2 θ ratios for both BCC and FCC structures.

For the BCC crystal structure the first two sets of principal diffracting planes
are the {110} and {200} planes (Table 3.7). Substitution of the Miller {hkl}
indices of these planes into Eq. 3.13 gives

sin2 θA

sin2 θB

= 12 + 12 + 02

22 + 02 + 02
= 0.5 (3.14)

Thus, if the crystal structure of the unknown cubic metal is BCC, the ratio of
the sin2 θ values that correspond to the first two principal diffracting planes will
be 0.5.

For the FCC crystal structure the first two sets of principal diffracting planes
are the {111} and {200} planes (Table 3.7). Substitution of the Miller {hkl} in-
dices of these planes into Eq. 3.13 gives

sin2 θA

sin2 θB

= 12 + 12 + 12

22 + 02 + 02
= 0.75 (3.15)

Thus, if the crystal structure of the unknown cubic metal is FCC, the ratio of
the sin2 θ values that correspond to the first two principal diffracting planes will
be 0.75.
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EXAMPLE 
PROBLEM 3.16

Example Problem 3.16 uses Eq. 3.13 and experimental x-ray diffraction
data for the 2θ values for the principal diffracting planes to determine whether
an unknown cubic metal is BCC or FCC. X-ray diffraction analysis is usually
much more complicated than Example Problem 3.16, but the principles used
are the same. Both experimental and theoretical x-ray diffraction analysis has
been and continues to be used for the determination of the crystal structure of
materials.

An x-ray diffractometer recorder chart for an element that has either the BCC or the
FCC crystal structure shows diffraction peaks at the following 2θ angles: 40, 58, 73,
86.8, 100.4, and 114.7. The wavelength of the incoming x-ray used was 0.154 nm.

(a) Determine the cubic structure of the element.
(b) Determine the lattice constant of the element.
(c) Identify the element.

■ Solution
(a) Determination of the crystal structure of the element. First, the sin2 θ values are

calculated from the 2θ diffraction angles.

Next the ratio of the sin2 θ values of the first and second angles is calculated:

sin2 θ

sin2 θ
= 0.117

0.235
= 0.498 ≈ 0.5

The crystal structure is BCC since this ratio is ≈ 0.5. If the ratio had been
≈ 0.75, the structure would have been FCC.

(b) Determination of the lattice constant. Rearranging Eq. 3.12 and solving for
a2gives

a2 = λ2

4

h2 + k2 + l2

sin2 θ
(3.16)

or

a = λ

2

√
h2 + k2 + l2

sin2 θ
(3.17)

2�(deg) �(deg) sin � sin2 �

40 20 0.3420 0.1170
58 29 0.4848 0.2350
73 36.5 0.5948 0.3538
86.8 43.4 0.6871 0.4721

100.4 50.2 0.7683 0.5903
114.7 57.35 0.8420 0.7090
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3.12 Summary 107

Substituting into Eq. 3.17 h = 1, k = 1, and l = 0 for the h, k, l Miller indices
of the first set of principal diffracting planes for the BCC crystal structure,
which are the {110} planes, the corresponding value for sin2 θ , which is 0.117,
and 0.154 nm for λ, the incoming radiation, gives

a = 0.154 nm

2

√
12 + 12 + 02

0.117
= 0.318 nm �

(c) Identification of the element. The element is tungsten since this element has a
lattice constant of 0.316 nm and is BCC.

3.12 SUMMARY
Atomic arrangements in crystalline solids can be described by a network of lines called a
space lattice. Each space lattice can be described by specifying the atom positions in a
repeating unit cell. There are seven crystal systems based on the geometry of the axial
lengths and interaxial angles of the unit cells. These seven systems have a total of 14 sub-
lattices (unit cells) based on the internal arrangements of atomic sites within the unit
cells.

In metals the most common crystal structure unit cells are: body-centered cubic
(BCC), face-centered cubic (FCC), and hexagonal close-packed (HCP) (which is a dense
variation of the simple hexagonal structure).

Crystal directions in cubic crystals are the vector components of the directions
resolved along each of the component axes and reduced to smallest integers. They are in-
dicated as [uvw]. Families of directions are indexed by the direction indices enclosed by
pointed brackets as 〈uvw〉. Crystal planes in cubic crystals are indexed by the reciprocals
of the axial intercepts of the plane (followed by the elimination of fractions) as (hkl).
Cubic crystal planes of a form (family) are indexed with braces as {hkl}. Crystal planes
in hexagonal crystals are commonly indexed by four indices h, k, i, and l enclosed in
parentheses as (hkil). These indices are the reciprocals of the intercepts of the plane on the
a1 , a2 , a3 , and c axes of the hexagonal crystal structure unit cell. Crystal directions in
hexagonal crystals are the vector components of the direction resolved along each of the
four coordinate axes and reduced to smallest integers as [uvtw].

Using the hard-sphere model for atoms, calculations can be made for the volume,
planar, and linear density of atoms in unit cells. Planes in which atoms are packed as
tightly as possible are called close-packed planes, and directions in which atoms are in
closest contact are called close-packed directions. Atomic packing factors for different
crystal structures can also be determined by assuming the hard-sphere atomic model.
Some metals have different crystal structures at different ranges of temperature and pres-
sure, a phenomenon called polymorphism.

Crystal structures of crystalline solids can be determined by using x-ray diffraction
analysis techniques. X-rays are diffracted in crystals when the Bragg’s law
(nλ = 2d sin θ ) conditions are satisfied. By using the x-ray diffractometer and the pow-
der method, the crystal structure of many crystalline solids can be determined.

smi02334_ch03.qxd  4/21/03  3:38 PM  Page 107



108 C H A P T E R 3 Crystal Structures and Crystal Geometry

3.13 DEFINITIONS
Sec. 3.1

Crystal: a solid composed of atoms, ions, or molecules arranged in a pattern that is
repeated in three dimensions.

Crystal structure: a regular three-dimensional pattern of atoms or ions in space.
Space lattice: a three-dimensional array of points each of which has identical

surroundings.
Lattice point: one point in an array in which all the points have identical 

surroundings.
Unit cell: a convenient repeating unit of a space lattice. The axial lengths and axial

angles are the lattice constants of the unit cell.

Sec. 3.3

Body-centered cubic (BCC) unit cell: a unit cell with an atomic packing arrangement
in which one atom is in contact with eight identical atoms located at the corners of an
imaginary cube.

Face-centered cubic (FCC) unit cell: a unit cell with an atomic packing arrangement
in which 12 atoms surround a central atom. The stacking sequence of layers of close-
packed planes in the FCC crystal structure is ABCABC. . . .

Hexagonal close-packed (HCP) unit cell: a unit cell with an atomic packing
arrangement in which 12 atoms surround a central identical atom. The stacking
sequence of layers of close-packed planes in the HCP crystal structure is 
ABABAB. . . .

Atomic packing factor (APF): the volume of atoms in a selected unit cell divided by
the volume of the unit cell.

Sec. 3.5

Indices of direction in a cubic crystal: a direction in a cubic unit cell is indicated by a
vector drawn from the origin at one point in a unit cell through the surface of the unit
cell; the position coordinates (x, y, and z) of the vector where it leaves the surface of
the unit cell (with fractions cleared) are the indices of direction. These indices,
designated u, v, and w are enclosed in brackets as [uvw]. Negative indices are
indicated by a bar over the index.

Sec. 3.6

Indices for cubic crystal planes (Miller indices): the reciprocals of the intercepts
(with fractions cleared) of a crystal plane with the x, y, and z axes of a unit cube are
called the Miller indices of that plane. They are designated h, k, and l for the x, y, and
z axes, respectively, and are enclosed in parentheses as (hkl). Note that the selected
crystal plane must not pass through the origin of the x, y, and z axes.

Sec. 3.9

Volume density �v: mass per unit volume; this quantity is usually expressed in Mg/m3

or g/cm3.
Planar density �p: the equivalent number of atoms whose centers are intersected by a

selected area divided by the selected area.
Linear density �t: the number of atoms whose centers lie on a specific direction on a

specific length of line in a unit cube.
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Sec. 3.10

Polymorphism (as pertains to metals): the ability of a metal to exist in two or more
crystal structures. For example, iron can have a BCC or an FCC crystal structure,
depending on the temperature.

3.14 PROBLEMS
3.1 Define a crystalline solid.
3.2 Define a crystal structure. Give examples of materials that have crystal structures.
3.3 Define a space lattice.
3.4 Define a unit cell of a space lattice. What lattice constants define a unit cell?
3.5 What are the 14 Bravais unit cells?
3.6 What are the three most common metal crystal structures? List five metals that

have each of these crystal structures.
3.7 How many atoms per unit cell are there in the BCC crystal structure?
3.8 What is the coordination number for the atoms in the BCC crystal structure?
3.9 What is the relationship between the length of the side a of the BCC unit cell and

the radius of its atoms?
3.10 Molybdenum at 20◦C is BCC and has an atomic radius of 0.140 nm. Calculate a

value for its lattice constant a in nanometers.
3.11 Niobium at 20◦C is BCC and has an atomic radius of 0.143 nm. Calculate a value

for its lattice constant a in nanometers.
3.12 Lithium at 20◦C is BCC and has a lattice constant of 0.35092 nm. Calculate a

value for the atomic radius of a lithium atom in nanometers.
3.13 Sodium at 20◦C is BCC and has a lattice constant of 0.42906 nm. Calculate a

value for the atomic radius of a sodium atom in nanometers.
3.14 How many atoms per unit cell are there in the FCC crystal structure?
3.15 What is the coordination number for the atoms in the FCC crystal structure?
3.16 Gold is FCC and has a lattice constant of 0.40788 nm. Calculate a value for the

atomic radius of a gold atom in nanometers.
3.17 Platinum is FCC and has a lattice constant of 0.39239 nm. Calculate a value for

the atomic radius of a platinum atom in nanometers.
3.18 Palladium is FCC and has an atomic radius of 0.137 nm. Calculate a value for its

lattice constant a in nanometers.
3.19 Strontium is FCC and has an atomic radius of 0.215 nm. Calculate a value for its

lattice constant a in nanometers.
3.20 Calculate the atomic packing factor for the FCC structure.
3.21 How many atoms per unit cell are there in the HCP crystal structure?
3.22 What is the coordination number for the atoms in the HCP crystal structure?
3.23 What is the ideal c/a ratio for HCP metals?
3.24 Of the following HCP metals, which have higher or lower c/a ratios than the

ideal ratio: Zr, Ti, Zn, Mg, Co, Cd, and Be?
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110 C H A P T E R 3 Crystal Structures and Crystal Geometry

3.25 Calculate the volume in cubic nanometers of the titanium crystal structure unit
cell. Titanium is HCP at 20◦C with a = 0.29504 nm and c = 0.46833 nm.

3.26 Rhenium at 20◦C is HCP. The height c of its unit cell is 0.44583 nm and its c/a
ratio is 1.633. Calculate a value for its lattice constant a in nanometers.

3.27 Osmium at 20◦C is HCP. Using a value of 0.135 nm for the atomic radius of
osmium atoms, calculate a value for its unit-cell volume. Assume a packing
factor of 0.74.

3.28 How are atomic positions located in cubic unit cells?
3.29 List the atom positions for the eight corner and six face-centered atoms of the

FCC unit cell.
3.30 How are the indices for a crystallographic direction in a cubic unit cell

determined?
3.31 Draw the following directions in a BCC unit cell and list the position coordinates

of the atoms whose centers are intersected by the direction vector:
(a) [100] (b) [110] (c) [111]

3.32 Draw direction vectors in unit cubes for the following cubic directions:
(a) [11̄1̄] (b) [11̄0] (c) [1̄21̄] (d) [1̄1̄3]

3.33 Draw direction vectors in unit cubes for the following cubic directions:

3.34 What are the indices of the directions shown in the unit cubes of Fig. P3.34?

(a) [11̄2̄] (c) [3̄31] (e) [21̄2] (g) [1̄01] (i) [321] (k) [12̄2̄]
(b) [12̄3] (d) [02̄1] ( f ) [23̄3] (h) [121̄] ( j) [103̄] (l) [2̄2̄3]
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h

1
4

1
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1
2

2
3

1
4

3
4

x

y

z

d

c

b

a
1
3

1
4

1
4

3
4

1
2

1
2

(a) (b)

Figure P3.34

3.35 A direction vector passes through a unit cube from the ( 3
4 , 0, 1

4 ) to the ( 1
2 , 1, 0)

positions. What are its direction indices?
3.36 A direction vector passes through a unit cube from the (1, 0, 3

4 ) to the ( 1
4 , 1, 1

4 )
positions. What are its direction indices?

3.37 What are the crystallographic directions of a family or form? What generalized
notation is used to indicate them?

3.38 What are the directions of the 〈100〉 family or form for a unit cube?
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Figure P3.44

3.39 What are the directions of the 〈111〉 family or form for a unit cube?
3.40 What 〈110〉-type directions lie on the (111) plane of a cubic unit cell?
3.41 What 〈111〉-type directions lie on the (110) plane of a cubic unit cell?
3.42 How are the Miller indices for a crystallographic plane in a cubic unit cell

determined? What generalized notation is used to indicate them?
3.43 Draw in unit cubes the crystal planes that have the following Miller indices:

3.44 What are the Miller indices of the cubic crystallographic planes shown in
Fig. P3.44?

(a) (11̄1̄) (c) (12̄1̄) (e) (32̄1) (g) (201̄) (i) (2̄32) (k) (31̄2)
(b) (102̄) (d) (213̄) ( f ) (302̄) (h) (2̄12̄) ( j) (133̄) (l) (3̄31̄)

3.45 What is the notation used to indicate a family or form of cubic crystallographic
planes?

3.46 What are the {100} family of planes of the cubic system?
3.47 Draw the following crystallographic planes in a BCC unit cell and list the

position of the atoms whose centers are intersected by each of the planes:
(a) (100) (b) (110) (c) (111)

3.48 Draw the following crystallographic planes in an FCC unit cell and list the
position coordinates of the atoms whose centers are intersected by each of the
planes:
(a) (100) (b) (110) (c) (111)

3.49 A cubic plane has the following axial intercepts: a = 1
3 , b = − 2

3 , c = 1
2 . What

are the Miller indices of this plane?

3.50 A cubic plane has the following axial intercepts: a = − 1
2 , b = − 1

2 , c = 2
3 . What

are the Miller indices of this plane?

3.51 A cubic plane has the following axial intercepts: a = 1, b = 2
3 , c = − 1

2 . What are
the Miller indices of this plane?
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112 C H A P T E R 3 Crystal Structures and Crystal Geometry

3.52 Determine the Miller indices of the cubic crystal plane that intersects the
following position coordinates: (1, 0, 0); (1, 1

2 , 1
4 ); ( 1

2 , 1
2 , 0).

3.53 Determine the Miller indices of the cubic crystal plane that intersects the
following position coordinates: ( 1

2 , 0, 1
2 ); (0, 0, 1); (1, 1, 1).

3.54 Determine the Miller indices of the cubic crystal plane that intersects the
following position coordinates: (1, 1

2 , 1); ( 1
2 , 0, 3

4 ); (1, 0, 1
2 ).

3.55 Determine the Miller indices of the cubic crystal plane that intersects the
following position coordinates: (0, 0, 1

2 ); (1, 0, 0); ( 1
2 , 1

4 , 0).

3.56 Rodium is FCC and has a lattice constant a of 0.38044 nm. Calculate the
following interplanar spacings:
(a) d111 (b) d200 (c) d220

3.57 Tungsten is BCC and has a lattice constant a of 0.31648 nm. Calculate the
following interplanar spacings:
(a) d110 (b) d220 (c) d310

3.58 The d310 interplanar spacing in a BCC element is 0.1587 nm. (a) What is its
lattice constant a? (b) What is the atomic radius of the element? (c) What could
this element be?

3.59 The d422 interplanar spacing in an FCC metal is 0.083397 nm. (a) What is its
lattice constant a? (b) What is the atomic radius of the metal? (c) What could this
metal be?

3.60 How are crystallographic planes determined in HCP unit cells?
3.61 What notation is used to describe HCP crystal planes?
3.62 Draw the hexagonal crystal planes whose Miller-Bravais indices are:

(a) (101̄1) (d) (12̄12) (g) (1̄21̄2) ( j) (1̄100)
(b) (011̄1) (e) (21̄1̄1) (h) (22̄00) (k) (2̄111)
(c) (1̄21̄0) ( f ) (11̄01) (i) (101̄2) (l) (1̄012)

3.63 Determine the Miller-Bravais indices of the hexagonal crystal planes in
Fig. P3.63.

�a1

�a3

a2�a2

a1

b

a c

a3

1
2

b

c

a �a1

�a3

a2�a2

a1

a3

(a) (b)

Figure P3.63
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(a) (b)

a3

a2

�a3

�a2 a1

�a1

a3

a2

�a3

�a2 a1

�a1

Figure P3.67

3.64 Determine the Miller-Bravais direction indices of the −a1 , −a2 , and −a3

directions.
3.65 Determine the Miller-Bravais direction indices of the vectors originating at the

center of the lower basal plane and ending at the endpoints of the upper basal
plane as indicated in Fig. 3.18d.

3.66 Determine the Miller-Bravais direction indices of the basal plane of the vectors
originating at the center of the lower basal plane and exiting at the midpoints
between the principal planar axes.

3.67 Determine the Miller-Bravais direction indices of the directions indicated in
Fig. P3.67.

3.68 What is the difference in the stacking arrangement of close-packed planes in
(a) the HCP crystal structure and (b) the FCC crystal structure?

3.69 What are the most densely packed planes in (a) the FCC structure and (b) the
HCP structure?

3.70 What are the closest-packed directions in (a) the FCC structure and (b) the HCP
structure?

3.71 The lattice constant for BCC tantalum at 20◦C is 0.33026 nm and its density is
16.6 g/cm3. Calculate a value for its atomic mass.

3.72 Calculate a value for the density of FCC platinum in grams per cubic
centimeter from its lattice constant a of 0.39239 nm and its atomic mass of
195.09 g/mol.

3.73 Calculate the planar atomic density in atoms per square millimeter for the
following crystal planes in BCC chromium, which has a lattice constant of
0.28846 nm: (a) (100), (b) (110), (c) (111).

3.74 Calculate the planar atomic density in atoms per square millimeter for the
following crystal planes in FCC gold, which has a lattice constant of 0.40788 nm:
(a) (100), (b) (110), (c) (111).

3.75 Calculate the planar atomic density in atoms per square millimeter for the (0001)
plane in HCP beryllium, which has a constant a = 0.22856 nm and a c constant
of 0.35832 nm.
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114 C H A P T E R 3 Crystal Structures and Crystal Geometry

3.76 Calculate the linear atomic density in atoms per millimeter for the following
directions in BCC vanadium, which has a lattice constant of 0.3039 nm:
(a) [100], (b) [110], (c) [111].

3.77 Calculate the linear atomic density in atoms per millimeter for the following
directions in FCC iridium, which has a lattice constant of 0.38389 nm:
(a) [100], (b) [110], (c) [111].

3.78 What is polymorphism with respect to metals?
3.79 Titanium goes through a polymorphic change from BCC to HCP crystal structure

upon cooling through 882◦C. Calculate the percentage change in volume when
the crystal structure changes from BCC to HCP. The lattice constant a of the
BCC unit cell at 882◦C is 0.332 nm, and the HCP unit cell has a = 0.2950 nm
and c = 0.4683 nm.

3.80 Pure iron goes through a polymorphic change from BCC to FCC upon heating
through 912◦C. Calculate the volume change associated with the change in
crystal structure from BCC to FCC if at 912◦C the BCC unit cell has a lattice
constant a = 0.293 nm and the FCC unit cell a = 0.363 nm.

3.81 What are x-rays, and how are they produced?
3.82 Draw a schematic diagram of an x-ray tube used for x-ray diffraction, and

indicate on it the path of the electrons and x-rays.
3.83 What is the characteristic x-ray radiation? What is its origin?
3.84 Distinguish between destructive interference and constructive interference of

reflected x-ray beams through crystals.
3.85 Derive Bragg’s law by using the simple case of incident x-ray beams being

diffracted by parallel planes in a crystal.
3.86 A sample of BCC metal was placed in an x-ray diffractometer using x-rays with a

wavelength of λ = 0.1541 nm. Diffraction from the {221} planes was obtained at
2θ = 88.838◦. Calculate a value for the lattice constant a for this BCC elemental
metal. (Assume first-order diffraction, n = 1.)

3.87 X-rays of an unknown wavelength are diffracted by a gold sample. The 2θ angle
was 64.582◦ for the {220} planes. What is the wavelength of the x-rays used?
(The lattice constant of gold = 0.40788 nm; assume first-order diffraction,
n = 1.)

3.88 An x-ray diffractometer recorder chart for an element that has either the BCC or
the FCC crystal structure showed diffraction peaks at the following 2θ angles:
41.069◦ , 47.782◦ , 69.879◦ , and 84.396◦ . (The wavelength of the incoming
radiation was 0.15405 nm.)10

(a) Determine the crystal structure of the element.
(b) Determine the lattice constant of the element.
(c) Identify the element.

3.89 An x-ray diffractometer recorder chart for an element that has either the BCC or
the FCC crystal structure showed diffraction peaks at the following 2θ angles:
38.60◦ , 55.71◦ , 69.70◦ , 82.55◦ , 95.00◦ , and 107.67◦ . (Wavelength λ of the
incoming radiation was 0.15405 nm.)

10X-ray diffraction data courtesy of the International Centre for Diffraction Data.

smi02334_ch03.qxd  4/21/03  3:38 PM  Page 114



(a) Determine the crystal structure of the element.
(b) Determine the lattice constant of the element.
(c) Identify the element.

3.90 An x-ray diffractometer recorder chart for an element that has either the BCC or
the FCC crystal structure showed diffraction peaks at the following 2θ angles:
36.191◦ , 51.974◦ , 64.982◦ , and 76.663◦ . (The wavelength of the incoming
radiation was 0.15405 nm.)
(a) Determine the crystal structure of the element.
(b) Determine the lattice constant of the element.
(c) Identify the element.

3.91 An x-ray diffractometer recorder chart for an element that has either the BCC or
the FCC crystal structure showed diffraction peaks at the following 2θ angles:
40.663◦ , 47.314◦ , 69.144◦ , and 83.448◦ . (The wavelength λ of the incoming
radiation was 0.15405 nm.)
(a) Determine the crystal structure of the element.
(b) Determine the lattice constant of the element.
(c) Identify the element.

3.15 MATERIALS SELECTION 
AND DESIGN PROBLEMS

1. In the design of computer chips and microelectronic devices, single crystal silicon
wafers are used as the building blocks of the system. (a) To which class of
materials does silicon belong? (b) Discuss the bonding and crystal structure of the
silicon crystal. (c) Propose a process by which single silicon crystals can be
manufactured.

2. Steel is manufactured by adding smaller carbon atoms to the crystal structure of
iron. It is possible to add more carbon to the structure when the structure of iron is
FCC. However, the normal room-temperature structure of iron is BCC. Design a
process that allows the introduction of more carbon to the structure of iron in a
solid state.

3. You are given an unknown material and are asked to identify it to the best of your
ability. What are some of the tests that you can perform to help identify the
material?

4. Often, turbine blades operating at high temperature and high stress levels are
manufactured in the form of a large single crystal. (a) Speculate on the advantages
of a single-crystal turbine blade. (b) What properties should the selected material
have? (c) What specific material would you select to make the single-crystal
turbine blade?

5. Name as many carbon allotropes as you can and discuss their crystal 
structure.

6. Silicon wafers are sometimes coated with a thin layer of aluminum nitride at
high temperatures (1000◦C). The coefficient of thermal expansion of the
silicon crystal is significantly different than that of aluminum nitride. Will this
cause a problem? Explain.

3.15 Materials Selection and Design Problems 115
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