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Abstract

The program phon calculates force constant matrices and phonon frequencies in crystals. From the frequencies it
also calculates various thermodynamic quantities, like the Helmholtz free energy, the entropy, the specific heat and the
internal energy of the harmonic crystal. The procedure is based on the small displacement method, and can be used
in combination with any program capable to calculate forces on the atoms of the crystal.

1 Program summary

Title of program: phon

Citation: D. Alfè, Computer Physics Communications 180,2622-2633 (2009)

URL of program: http://chianti.geol.ucl.ac.uk/∼dario

URL of tutorial: http://chianti.geol.ucl.ac.uk/∼dario

Licensing provisions: None

Operating system: Unix

Program Language: FORTRAN 90

Memory requirement: Depends on super-cell size, but usually negligible

External subprograms ZHEEV and DSYEV (Lapack); needs BLAS

Keywords phonons, vibrations, harmonic systems, thermodynamics of harmonic systems

2 Theoretical overview

2.1 Phonon frequencies

The central quantity in the calculation of the phonon frequencies is the force-constant matrix Φisα,jtβ , since the frequencies
at wavevector k are the eigenvalues of the dynamical matrix Dsα,tβ , defined as:

Dsα,tβ(k) =
1√

MsMt

∑
i

Φisα,jtβ exp
[
ik · (R0

j + τt −R0
i − τs)

]
. (1)

where R0
i is a vector of the lattice connecting different primitive cells and τs is the position of the atom s in the primitive

cell. If we have the complete force-constant matrix, then Dsα,tβ and hence the frequencies ωks can be obtained at any k,
so that ω̄ can be computed to any required precision. In principle, the elements of Φisα,jtβ are non-zero for arbitrarily
large separations | R0

j + τt−R0
i − τs |, but in practice they decay rapidly with separation, so that a key issue in achieving

our target precision is the cut-off distance beyond which the elements can be neglected.
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2.2 Calculation of the force constant matrix

We calculate Φisα,jtβ by the small-displacement method. In harmonic approximation the α Cartesian component of the
force exerted on the atom at position R0

i + τs is

F
ujtβ

isα = −
∑
jtβ

Φisα,jtβ ujtβ (2)

where ujsβ is the displacement of the atom in R0
j + τt along the direction β and F

ujtβ

isα is the α component of the force
induced on the atom at position R0

i + τs. The force constant matrix can be calculated as:

Φisα,jtβ = −
F

ujtβ

isα,jtβ

ujtβ
(3)

by displacing once at a time all the atoms of the lattice along the three Cartesian components by ujtβ , and calculating the
forces Fisα,jtβ induced on the atoms in R0

i + τs. Eqn.( 3) computes the force constant matrix using forward differences;
for numerical reasons, it can be advantageous in some cases to use central differences, in which case the force constant
matrix can be calculated as:

Φisα,jtβ = −
F

ujtβ

isα,jtβ − F
−ujtβ

isα,jtβ

2ujtβ
(4)

Since the crystal is invariant under traslations of any lattice vector, it is only necessary to displace the atoms in one
primitive cell and calculate the forces induced on all the other atoms of the crystal. In what follows we will assume this
as understood and put simply j = 0.

It is important to appreciate that the Φlsα,l′tβ in the formula for Dsα,tβ(k) is the force-constant matrix in the infinite
lattice, with no restriction on the wavevector k, whereas the calculations of Φlsα,l′tβ can only be done in supercell
geometry. Without a further assumption, it is strictly impossible to extract the infinite-lattice Φlsα,l′tβ from supercell
calculations, since the latter deliver information only at wavevectors that are reciprocal lattice vectors of the superlattice.
The further assumption needed is that the infinite-lattice Φlsα,l′tβ vanishes when the separation Rl′t −Rls is such that
the positions Rls and Rl′t lie in different Wigner-Seitz (WS) cells of the chosen superlattice. More precisely, if we take
the WS cell centred on Rl′t, then the infinite-lattice value of Φlsα,l′tβ vanishes if Rls is in a different WS cell; it is equal
to the supercell value if Rls is wholly within the same WS cell; and it is equal to the supercell value divided by an integer
P if Rls lies on the boundary of the same WS cell, where P is the number of WS cells having Rls on their boundary.
With this assumption, the Φlsα,l′tβ elements will converge to the correct infinite-lattice values as the dimensions of the
supercell are systematically increased.

It is not always necessary to displace all the atoms in the primitive cell, since the use of symmetries can reduce the
amount of work needed. This is done as follows. We displace one atom in the primitive cell, let’s call it ’one’, and we
calculate the forces induced by the displacement on all the other atoms of the supercell. Then we pick up one other atom
of the primitive cell, atom ’two’. If there is a symmetry operation S (not necessarily a point group symmetry operation)
such that, when S is applyed to the crystal atom two is sent into atom one and the whole crystal is invariant under such
transformation, then it is not necessary to displace atom two, and the part of the force constant matrix associated with
its displacement can be calculated using

Φis,02 = B(S)Φλis(S),01B(S−1), (5)

where B(S) is the 3× 3 matrix representing the point group part of S in Cartesian coordinates, and λis(S) indicates the
atom of the crystal where the atom in R0

i + τs is brought because of the action of the symmetry operation S. If there
is no symmetry operation connecting atom two to atom one then atom two is displaced and all the induced force field is
calculated. The procedure is repeated for all the atoms of the primitive cell.

In principle each atom has to be displaced along the three Cartesian directions. It is sometimes convenient to displace
the atoms along some special directions so as to maximize the number of symmetry operations still present in the ’excited’
supercell, in this way the calculations of the forces are less expensive. This can always be done, as long as one displaces
the atoms along three linearly independent directions. The forces induced by the displacements along the three Cartesian
directions is easily reconstructed by the linear combination

Fis,0tα =
∑

l

AlαF̃is,0tk (6)

where F̃is,0tk is the force induced on the atom in R0
i + τs due to a displacement of the atom in τt along the direction

uk, and A = ( u1

|u1| ,
u2

|u2| ,
u3

|u3| )
−1 is the inverse of the 3 × 3 matrix whose columns are the normalized displacements in

Cartesian coordinates.
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Using symmetries it is possible to reduce the number of displacements even further: if applying a point group symmetry
operation U to the displacement vector u1 one obtains a vector u2 which is linearly independent from u1, then the force
field that would be induced by the displacement u2 can be calculated by

Fis,0t2 = B(U)Fλis(U−1),0t1. (7)

If a linearly independent direction cannot be found one has to displace the atom along a chosen independent direction
and perform an other calculation. This is done untill a set of three independent directions is found.

The force constant matrix is invariant under the point group symmetry operations of the crystal. This is not au-
tomatically garanteed by the procedure just described, because in general the crystal is not harmonic, and therefore
eqns.( 3, 4) are only an approximation. So, the force constant matrix must be symmetrized with respect to the point
group operations of the crystal:

Φis,0t =
1

NG

∑
U

B(U)Φλis(U),0tB(U−1). (8)

The symmetrization of the force constant matrix removes all even-order anharmonicities [1]. The harmonic approximation
becomes better and better as the displacement are made smaller and smaller. However, if the displacements are small,
also the force induced are small, but there is a limit in the accuracy achievable in the calculations, so one cannot make
too small displacements. Usually a fraction of a % of the nearest-neighbour distance is a good compromise.

As an example of the procedure just described let’s consider the h.c.p. crystal. There are two atoms in the primitive
cell, so in principles we would need six independent calculations. We will see that the number of calculations needed is
equal to two. In first place one can easily recognize that only one atom needs to be displaced: if we traslate the crystal
from one atom to the other and we perform a spatial inversion the crystal remains unchanged. Secondly, by applying
a clockwise rotation of 120 degrees, for example, to a displacement in the x direction, one obtains an independent
displacement. So only one additional displacement along the z direction is needed.

3 Description of the program and input/output files

The program reads the following files:

• INPHON: contains the input parameters

• POSCAR: contains the crystal parameters and atomic positions, the format is the same as in the program VASP
[2], and is the following:

SiO2
-47.88
4.2212779176 0.0000000000 0.0000000000
0.0000000000 4.2212779176 0.0000000000
0.0000000000 0.0000000000 2.6869912363
2 4
Direct
0.00000000 0.00000000 0.00000000
0.50000000 0.50000000 0.50000000
0.30657944 0.30657944 0.00000000
0.69342056 0.69342056 0.00000000
0.19342056 0.80657944 0.50000000
0.80657944 0.19342056 0.50000000

This example is the Stishovite structure of SiO2. The first line is a comment, the second line is a scale factor, if
negative is interpreted as the volume of the system (like in this case). Then the three lattice vectors, followed by
the number of atoms for each specie (here 2 silicons and 4 oxygens). The next line precedes the atomic coordinates,
and tells if these are in unit of the the lattice vectors of in Cartesian coordinates (here they are in unit of crystal
coordinates). Finally the atomic coordinates. Note that the crystal must be in its ground state. It is important to
relax the primitive cell very accurately before starting any phonon calculation.

• FORCES: contains the displacements and the force field for each displacement, the format is the following:

4
1 0.005 0.000 0.000
-0.61854500 0.18897800 0.00000000
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0.30803200 -0.00013900 0.00000000
0.01746700 0.01833500 0.00000000
-0.01926700 -0.01606600 0.00000000
0.14414800 -0.08517300 0.00000000
0.16816400 -0.10593400 0.00000000
1 0.000 0.000 0.005
0.00000000 0.00000000 -0.29116700
0.00000000 0.00000000 -0.00207200
0.01356000 0.01356000 0.01857500
-0.01356000 -0.01356000 0.01857500
-0.00997600 0.00997600 0.12804500
0.00997600 -0.00997600 0.12804500
3 0.005 0.000 0.000
-0.00548400 -0.00305700 0.00000000
0.15831200 0.09934800 0.00000000
-0.42565500 -0.18284700 0.00000000
0.08338600 0.08818100 0.00000000
-0.01075400 0.01564000 0.00000000
0.20019500 -0.01726600 0.00000000
3 0.000 0.000 0.005
-0.00001000 -0.00001000 0.01963200
0.00388400 0.00388400 0.12906300
0.01036900 0.01036900 -0.25656500
-0.01400200 -0.01400200 -0.00218800
-0.01406100 0.01382000 0.05502900
0.01382000 -0.01406100 0.05502900

The first line is the number of displacements, then, for each displacement, a line containing a number which in-
dicates the position of the atom in the super-cell which has been moved, followed by the displacement (in crystal
coordinates), followed by the forces on all the atoms in the super-cell (in units of eV/A and in Cartesian coordi-
nates). For central differences (LCENTRAL = .T.) the format of the file is the same, but there are twice as many
displacements (for each displacement u there is also −u).

In this example the super-cell is a primitive cell (to economise on space), in general you need to construct a super-cell,
displace the atoms in the primitive cell appropriately and calculate the induced forces. The procedure is explained below.

3.1 Super-cell generation

The first step to calculate phonons in a crystal is to construct the super-cell, this can be done using the following setting:

LSUPER =.TRUE. (default)
NDIM = NX NY NZ (default: 1 1 1)
NTYPES = 2 (no default)

where NX, NY and NZ are positive integer numbers. NTYPES is the number of different atomic species (2 in the Stishovite
example). phon reads the file POSCAR which must contain a super-cell, (nxa1,nya2,nza3) (possibly nx = ny = nz = 1)
and generates the file SPOSCAR which contains the super-cell whose lattice vectors are (NX a1,NY a2,NZ a3), where
(a1,a2,a3) are the lattice vectors of the primitive cell. Do not use NX 6= NY if the crystal has a symmetry operation
which connects a1 with a2. For face-centred-cubic (FCC) and body-centred-cubic (BCC) crystals do not use simple-cubic
lattice vectors with 4 and 2 atoms in the primitive cell respectively, use proper FCC and BCC lattice vectors and one
atom per primitive cell.

The program prints out a guess for the displacements needed to construct the full force field. These are written on
the stout and in the file DISP. The size of the displacement can be changed setting the variable DISP:

DISP = 25 (default, corresponding to displacements of 0.04 Å).

In principle, a single off symmetry displacement could be enough to generate the full force field, as three linearly indepen-
dent displacement may be generated from this using the symmetry operations of the crystal (this may not be true if the
crystal has low symmetry). In practice, however, one would like to use displacements that alter as little as possible the
symmetry of the crystal, because this minimises the computational effort in ab-initio calculations (maximising the number
of symmetry operations in general reduces the number of k-points needed). For this reason, the displacements suggested
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by the program work on the assumption that the first displacement will be along the x-axis, and appropriate additional
displacements along y and/or z are suggested if they are needed. The user may suggest his own first displacement using
the variable: DXSTART:

DXSTART = xstart ystart zstart

To use central differences (eqn. 4 instead of eqn. 3), set the variable LCENTRAL = .T.

3.2 Phonon dispersions

To calculate the dispersions we need to add the following settings in the INPHON file:

LRECIP = .T.
ND = 4; NPOINTS = 50
QI = 0.5 0.5 0.0 0.0 0.0 0.0 0.5 0.0 0.0 0.5 0.5 0.5
QF = 0.0 0.0 0.0 0.5 0.0 0.0 0.5 0.5 0.5 0.0 0.0 0.0

MASS = 28.085 16.0.

LRECIP = .T. means that the coordinates of the initial (QI) and final (QF) q-points are in units of reciprocal space
lattice vectors. Set LRECIP=.F. if you want to give these numbers in Cartesian coordinates. ND is the number of
initial and final points (usually high symmetry points in the Brillouin zone (BZ)), and NPOINTS is the number of points
between them. MASS is the mass of the ions. We also need to add:

LSUPER= .F.

which will tell phon to go beyond the generation of the super-cell (and not generating one). These settings will make
phon generate the file FREQ containing the frequencies in THz, and the file FREQ.cm with the frequencies in cm−1. If
the number of atoms in the primitive cell is larger than 16 then FREQ and FREQ.cm are not written, and phon produces
a number of files FREQ1 .... FREQn, ... containing 48 phonon modes each (in THz units). By setting the variable:

LFORCEOUT=.TRUE. (default = .FALSE.)

The program writes the file HARMONIC which contains the force constant matrix.

3.3 Density of states and thermodynamic quantities

The program also calculates the density of states, writing the file DOS. The input variables:

DOSIN = 0; DOSEND = 25; DOSSTEP = 0.1; DOSSMEAR = 0.02

specify the starting and the ending frequency (in THz), the step and the smear. The smear is the width of the Gaussian
which is convoluted with the dos spectrum. The density of states will be calculated using the available frequencies, which
in this case are those coming from the dispersion curves. This is not the best way to do, because the DOS is the integral
over the whole BZ of the phonon frequencies, and the dispersions along some special directions do not usually provide a
good sampling of the BZ.

The correct way to calculate the density of states is to generate a set of points which accurately sample the BZ, and
calculate the frequencies at these points. This can be done with the following settings:

LFREE = .TRUE.; TEMPERATURE = 1000
LGAMMA = .FALSE.
QA = 11; QB = 11; QC = 11

QA, QB and QC are the divisions for a Monkhorst and Pack (MP) [3] special points grid generations, LGAMMA =
.TRUE. means that the grid will pass through Γ. With the setting LFREE = .TRUE. the program will also calculate
zero-point energy, Helmholtz free energy, internal energy, specific heat and entropy, at the temperature given by the
variable TEMPERATURE in degrees Kelvin. The MP special points are written in the file QPOINTS, which can be
used for subsequent calculations without generating the points again (dense meshes can take time to be generated) by
setting QA to a negative number (default).

A convenient way to generate a set of thermodynamic properties as function of temperature is to set the variable:
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PTEMP= 10 90

This will create a file called THERMO, which contains the internal energy, the free energy, the free energy in the classical
limit, the entropy and the constant volume specific heat, as function of temperature, in the example above starting from
a temperature equal to the value of the input variable TEMPERATURE, in steps of 10 K, for 90 steps.

3.3.1 Partial density of states

In some experiments the measured density of states can be due to the vibrational frequencies of only some of the atoms of
the material investigated. For example, this is the case when inelastic X-ray spectroscopy is used to exploit the Mössbauer
effect, in which only the atoms having a nuclear energy level which resonate with the incoming X-ray radiation can interact
with the radiation. The result is that only the vibrations of these atoms are sampled in these experiment [4].

In order to calculate the partial density of states in a system in which, for example, there are two different atoms, the
following setting:

USETHIS = .F. .T.

will calculate the partial density of states due to the second atom only.

3.4 Translational invariance

When all the atoms are moved by the same amount, i.e. the crystal is rigidly shifted, the force on each atom must be
zero. This is a stronger constraint than the one in which it is the sum of the forces on each atom to be zero. The latter
is expressed by: ∑

s,t,i

Φisα,0tβ = 0, (9)

where Φisα,0tβ is the force constant matrix, s and t run over the number of atoms N in the primitive cell and i over
the M lattice vectors included in the calculation. If this constraint is not satisfied, it is straightforward to impose it by
subtracting from the calculated force on each atom the value F/(MN), where F =

∑
s,i Fsi, and Fsi is the force acting

on atom s in primitive cell i.
The former condition is: ∑

s,i

Φisα,0tβ = 0; for each t = 1, N. (10)

Clearly, Eq. 9 implies Eq. 10, but the opposite is not true in general. However, it is Eq. 10 to imply that at q = (0, 0, 0)
the three acoustic branches have identically zero frequencies.

The constraint in Eq. 10 has to be imposed in such a way that the force constant matrix remains symmetric: Φα,β(Rj+
τt −Ri − τs) = Φβ,α(−[Rj + τt −Ri − τs]). In the phon code this is done iteratively, in a number of steps in which the
symmetry is re-imposed at each step.

To impose translational invariance as described in set with the variable:

NTI = 20

Translational invariance is imposed iteratively, and ∼ 20 iterations are usually enough.
The amount of output printed by the phon is controlled by the variable IPRINT. IPRINT=0 will produce a minimal

output, IPRINT=3 a verbose output, which also includes the dynamical matrix and its eigenvectors.

3.5 Graphical representation of phonons at Γ

Setting the variable LEIGEN = .T. the program produces the files EIGEN.axsf and MODE???.axsf, to be used with
the program XCrySDen [5] to visualise phonon vibrations at Γ. The file EIGEN.axsf contains the eigenvectors of the
dynamical matrix. These can be visualised with XCrySden by typing:

xcrysden –axsf EIGEN.axsf

and then ticking in the “Display” menu the entry “Forces”. Atomic displacements for each mode will then be visualised
as arrows.

To visualise vibrations dynamically, use the files MODE???.axsf. Typing:

xcrysden –axsf MODE004.axsf
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Input variable Meaning Variable type Default
NTYPES Number of atomic types Integer No default
MASS Mass of atoms Real*NTYPES 1.0
LSUPER Generate supercell Logical .T.
NDIM Supercell dimensions Integer*3 (1,1,1)
LFREE Thermodynamic properties Logical .F.
TEMPERATURE Temperature Real No default
PTEMP Temperature increment, number of increments Real*2 (0.0, 1.0)
LFORCEOUT Writes force constant matrix file Logical .F.
LSYMM Symmetrises force constant matrix Logical .T.
SYMPREC Precision threshold Real 1d-6
DXSTART Initial displacement Real*3 (1.0, 0.0, 0.0)
DISP One over size of displacement (in Å−1) Integer 25 (0.04 Å)
LCENTRAL For central differences Logical .F. (Forward differences)
QA, QB, QC Number of divisions for q-points grid Integers No defaults
LGAMMA q-points grid through Γ Logical .F.
DOSIN, DOSEND,
DOSSTEP Density of states parameters Reals 0.0, 25.0, 0.1 (THz)
DOSSMEAR Width of Gaussian convoluted with DOS Real 0.02 (THz)
USETHIS Partial density of states Logic*NTYPES .T. (total DOS)
ND Number of q-points in dispersion segments Integer 0
QI, QF Initial and final points for dispersion segments Real*3 (0.0,0.0.0.0), (0.0,0.0,0.0)
LRECIP q-points in reciprocal lattice coordinates Logical .T.
NTI Imposes translational invariance Integer 1 (no TI imposed)
IPRINT Controls verbosity of output Integer 0 (little output)
LEIGEN Graphical representation of vibrations Logical .F. (no graphics)
NAME? Name of atoms in the primitive cell Character*NTYPES H
EIGSIZE Amplitude of vibrations Real 1.0
NCYCLESEIG Number of vibration cycles Integer 2

Table 1: Input variables

will, for example, visualise mode number 4. The number of cycles of vibrations is two by default, and it can be changed
using the variable NCYCLESEIG. The amplitude of the displacement can be altered using the variable EIGSIZE (defualt
= 1). The variables NAME? can be used to name the atoms of the primitive cell (default: NAME? = H).

3.6 Input variables and Input/Output files

A full list of input variables is reported in Table 1, and a list of the input/output files needed/generated by phon is
reported in Table 2

4 Test case

I now describe one of the three examples distributed with the program. This is located in the subdirectory “examples/Al”.
The example is Al in the FCC structure. The POSCAR contains already a 4× 4× 4 super-cell (64 atoms), and the file
FORCES has been already constructed using forces calculated with a density functional theory code. The INPHON file
is set to calculate phonon density of states and thermodynamic properties in the range of temperature 1000 - 1890 K.
Running phon with this INPHON file will produce the files DOS, DOS.meV and DOS.cm, containing the density of states
in units of number of frequencies/THz, or number of frequencies/meV or number of frequencies/cm−1 respectively, and
the file THERMO which contains the internal energy, the free energy, the free energy in the classical limit, the entropy
and the constant volume specific heat. The following are the first lines of the file THERMO:

# T(K) E(eV/cell) F(eV/cell) Fc(eV/cell) S(kB/cell) Cv(kB/cell)
1000.00 0.26047710 -0.33379199 -0.33477073 6.89616445 2.97739731
1010.00 0.26304303 -0.33974746 -0.34071653 6.92579274 2.97784007
1020.00 0.26560934 -0.34572835 -0.34668793 6.95513343 2.97826997
1030.00 0.26817601 -0.35173440 -0.35268468 6.98419200 2.97868750
1040.00 0.27074303 -0.35776537 -0.35870653 7.01297378 2.97909314
..........................................................................
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File name Input/Output Description of data
INPHON Input Input variables
POSCAR Input Supercell
FORCES Input Forces on all atoms (eV/Å), for each displacement
QPOINTS Input/Output q-points for thermodynamics
DISP Output Suggestions for displacements
SPOSCAR Output File containing supercell
FREQ, FREQ.cm Output (if natoms <=16) Phonon dispersions (THz and cm−1)
FREQi, i=1,natoms/16 Output (if natoms > 16) Phonon dispersions in groups of 48 (THz)
DOS, DOS.cm, DOS.meV Output Density of states (THz, cm−1, meV)
THERMO Output Thermodynamic properties
HARMONIC Output Force constant matrix
EIGEN.axsf Output Eigenvectors (for representation with XCrySDen)
MODE???.axsf Output Phonon vibrations (for representation with XCrySDen)

Table 2: Input/Output files

Now set LFREE=.F. in the INPHON file and run the code again. The files FREQ and FREQ.cm will appear, which
contain the phonon frequencies along three special directions in the Brillouin zone. The file FREQ contains the frequen-
cies in units of THz and FREQ.cm in units of cm−1. The following are the first lines of the file FREQ:

0.00000000 -0.00000 -0.00000 -0.00000
0.01428499 0.11682 0.12905 0.22737
0.02856997 0.23376 0.25796 0.45456
0.04285496 0.35096 0.38659 0.68141
0.05713994 0.46853 0.51481 0.90775
.................................................
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