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Within the Born-Oppenheimer adiabatic approximation the
nuclei move in a potential energy given by the total energy of
the electron system calculated (for instance within DFT) at fixed
nuclei. We call

Etot(RI + uI)

this energy. The electrons are assumed to be in the ground
state for each nuclear configuration.
If |uI | is small, we can expand Etot in a Taylor series with
respect to uI . Within the harmonic approximation:

Etot(RI+uI) = Etot(RI)+
∑
Iα

∂Etot

∂uIα
uIα+

1
2

∑
Iα,Jβ

∂2Etot

∂uIα∂uJβ
uIαuJβ+...

where the derivatives are calculated at uI = 0 and α and β
indicate the three cartesian coordinates.
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Equations of motion
At equilibrium ∂Etot

∂uIα
= 0, so the Hamiltonian of the ions

becomes:

H =
∑
Iα

P2
Iα

2MI
+

1
2

∑
Iα,Jβ

∂2Etot

∂uIα∂uJβ
uIαuJβ

where PI are the momenta of the nuclei and MI their masses.
The classical motion of the nuclei is given by the N × 3× Nat
functions uIα(t). These functions are the solutions of the
Hamilton equations:

u̇Iα =
∂H
∂PIα

ṖIα = − ∂H
∂uIα
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Equations of motion-II

With our Hamiltonian:

u̇Iα =
PIα

MI

ṖIα = −
∑
Jβ

∂2Etot

∂uIα∂uJβ
uJβ

or:

MIüIα = −
∑
Jβ

∂2Etot

∂uIα∂uJβ
uJβ
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The phonon solution

We can search the solution in the form of a phonon. Let’s
introduce a vector q in the first Brillouin zone. For each q we
can write:

uµsα(t) =
1√
Ms

Re
[
usα(q)ei(qRµ−ωqt)

]
where the time dependence is given by simple phase factors
e±iωqt and the displacement of the atoms in each cell identified
by the Bravais lattice Rµ can be obtained from the
displacements of the atoms in one unit cell, for instance the one
that corresponds to Rµ = 0: 1√

Ms
usα(q).
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Characteristic of a phonon in one dimension - I
A phonon at q = 0 has the same displacements in all unit cells:

A zone border phonon with qZB = π
a = G/2, where G = 2π

a is a
reciprocal lattice vector, has displacements which repeat every
two unit cells:
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Characteristic of a phonon in one dimension - II
A phonon with q = qZB/2 has displacements which repeat
every four unit cells:

A phonon at a general wavevector q could be incommensurate
with the underlying lattice:
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The phonon solution

Inserting this solution in the equations of motion and writing
I = (µ, s), J = (ν, s′) we obtain an eigenvalue problem for the
3× Nat variables usα(q):

ω2
qusα(q) =

∑
s′β

Dsαs′β(q)us′β(q)

where:

Dsαs′β(q) =
1√

MsMs′

∑
ν

∂2Etot

∂uµsα∂uνs′β
eiq(Rν−Rµ)

is the dynamical matrix of the solid.
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Within DFT the ground state total energy of the solid, calculated
at fixed nuclei, is:

Etot =
∑

i

〈ψi |−
1
2
∇2|ψi〉+

∫
Vloc(r)ρ(r)d3r +EH [ρ]+Exc[ρ]+UII

where ρ(r) is the density of the electron gas:

ρ(r) =
∑

i

|ψi(r)|2

and |ψi〉 are the solution of the Kohn and Sham equations. EH
is the Hartree energy, Exc is the exchange and correlation
energy and UII is the ion-ion interaction. According to the
Hellmann-Feynman theorem, the first order derivative of the
ground state energy with respect to an external parameter is:

∂Etot

∂λ
=

∫
∂Vloc(r)
∂λ

ρ(r)d3r +
∂UII

∂λ
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Deriving with respect to a second parameter µ:

∂2Etot

∂µ∂λ
=

∫
∂2Vloc(r)
∂µ∂λ

ρ(r)d3r +
∂2UII

∂µ∂λ

+

∫
∂Vloc(r)
∂λ

∂ρ(r)
∂µ

d3r

So the new quantity that we need to calculate is the charge
density induced, at first order, by the perturbation:

∂ρ(r)
∂µ

=
∑

i

[
∂ψ∗i (r)
∂µ

ψi(r) + ψ∗i (r)
∂ψi(r)
∂µ

]
To fix the ideas we can think that λ = uµsα and µ = uνs′β
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The wavefunctions obey the following equation:[
−1

2
∇2 + VKS(r)

]
ψi(r) = εiψi(r)

where VKS = Vloc(r) + VH(r) + Vxc(r). VKS(r, µ) depends on µ
so that also ψi(r, µ), and εi(µ) depend on µ. We can expand
these quantities in a Taylor series:

VKS(r, µ) = VKS(r, µ = 0) + µ
∂VKS(r)
∂µ

+ . . .

ψi(r, µ) = ψi(r, µ = 0) + µ
∂ψi(r)
∂µ

+ . . .

εi(µ) = εi(µ = 0) + µ
∂εi

∂µ
+ . . .
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Inserting these equations and keeping only the first order in µ
we obtain:[

−1
2
∇2 + VKS(r)− εi

]
∂ψi(r)
∂µ

= −∂VKS

∂µ
ψi(r) +

∂εi

∂µ
ψi(r)

where: ∂VKS
∂µ = ∂Vloc

∂µ + ∂VH
∂µ + ∂Vxc

∂µ and

∂VH

∂µ
=

∫
1

|r− r′|
∂ρ(r′)
∂µ

d3r ′

∂Vxc

∂µ
=

dVxc

dρ
∂ρ(r)
∂µ

depend self-consistently on the charge density induced by the
perturbation.
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The induced charge density depends only on Pc
∂ψi
∂µ where

Pc = 1− Pv is the projector on the conduction bands and
Pv =

∑
i |ψi〉〈ψi | is the projector on the valence bands. In fact:

∂ρ(r)
∂µ

=
∑

i

[
Pc
∂ψ∗i (r)
∂µ

ψi(r) + ψ∗i (r)Pc
∂ψi(r)
∂µ

]
+

∑
i

[
Pv
∂ψ∗i (r)
∂µ

ψi(r) + ψ∗i (r)Pv
∂ψi(r)
∂µ

]

∂ρ(r)
∂µ

=
∑

i

[
Pc
∂ψ∗i (r)
∂µ

ψi(r) + ψ∗i (r)Pc
∂ψi(r)
∂µ

]
+

∑
ij

ψ∗j (r)ψi(r)
(
〈∂ψi

∂µ
|ψj〉+ 〈ψi |

∂ψj

∂µ
〉
)
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DFPT

Therefore we can solve the self-consistent linear system:[
−1

2
∇2 + VKS(r)− εi

]
Pc
∂ψi(r)
∂µ

= −Pc
∂VKS

∂µ
ψi(r)

where
∂VKS

∂µ
=
∂Vloc

∂µ
+
∂VH

∂µ
+
∂Vxc

∂µ

and
∂ρ(r)
∂µ

=
∑

i

[
Pc
∂ψ∗i (r)
∂µ

ψi(r) + ψ∗i (r)Pc
∂ψi(r)
∂µ

]
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Practical calculations

The program ph.x solves this self-consistent linear system for
3× Nat perturbations at a fixed vector q. With ∂ρ(r)

∂µ for all the
perturbations it calculates the dynamical matrix

Dsαs′β(q)

at the given q. Diagonalizing this matrix we obtain 3× Nat
frequencies ωq,ν . By repeating this procedure for several q we
could plot ωq,ν as a function of q and display the phonon
dispersions. However, it is more convenient to adopt a different
approach that requires the calculation of the dynamical matrix
in a small set of points q.

Andrea Dal Corso Lattice dynamics



Lattice dynamic of a solid: phonons
Density functional perturbation theory

Interatomic force constants
Thermodynamics

q2r.x
matdyn.x

The dynamical matrix of the solid:

Dsαs′β(q) =
1√

MsMs′

∑
ν

∂2Etot

∂uµsα∂uνs′β
eiq(Rν−Rµ)

is a periodic function of q with Dsαs′β(q + G) = Dsαs′β(q) for
any reciprocal lattice vector G. Furthermore, due to the
translational invariance of the solid it does not depend on µ.
Eq.1 is a Fourier expansion of a three dimensional periodic
function. We have Fourier components only at the discrete
values Rν of the Bravais lattice and we can write:

1√
MsMs′

∂2Etot

∂uµsα∂uνs′β
=

Ω

(2π)3

∫
d3qDsαs′β(q)e−iq(Rν−Rµ) (1)
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We can use the properties of the discrete Fourier transform and
sample the integral in a uniform mesh of points q. This will give
the interatomic force constants only for a certain range of
values of Rν neighbors of Rµ. The code q2r.x reads a set of
dynamical matrices calculated in a uniform mesh of q points
and calculates, using Eq. 1, the interatomic force constants for
a shell of neighbors of the point Rµ = 0.
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Therefore, if the dynamical matrix is a sufficiently smooth
function of q and the interatomic force constants decay
sufficiently rapidly in real space, we can use Eq. 1 to calculate
the dynamical matrix at arbitrary q, limiting the sum to a few Rν

neighbors of Rµ = 0. The program matdyn.x reads the
interatomic force constants calculated by q2r.x and calculates
the dynamical matrices at an arbitrary q using Eq. 1.
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The canonical partition function

The vibrational energy of a solid whose phonon modes have
frequencies ωq,ν depends on the number of phonons nq,ν in
each mode:

Ei =
∑
q,ν

(
nq,ν +

1
2

)
~ωq,ν ,

where i indicates the set of integer numbers nq,ν . At a given
temperature T the probability that the solid has a certain
energy Ei can be calculated by statistical methods and it is:

1
Z

e−βEi
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where Z is the canonical partition function defined as

Z =
∑

i

e−βEi ,

the sum is over all the possible sets of integers nq,ν and
β = 1/KBT (KB is the Boltzmann constant). We can write

Z =
∑

i

e−βEi =
∏
q,ν

( ∞∑
n=0

e−(n+1/2)β~ωq,ν

)
Making the sum over n and taking the logarithm gives:

ln Z =
∑
q,ν

ln

[
e−

1
2β~ωq,ν

1− e−β~ωq,ν

]
= −

∑
q,ν

ln
[
2 sinh(

β~ωq,ν

2
)

]
= −β

∑
q,ν

~ωq,ν

2
−
∑
q,ν

ln
[
1− e−β~ωq,ν

]
.
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The thermodynamic functions
The energy per unit volume of the solid is:

u =
1
V

∑
i Eie−βEi∑

i e−βEi
= − 1

V
∂ ln Z
∂β

.

The Helmholtz free energy per unit volume (f = u − Ts where s
is the entropy per unit volume), is given by:

f = − 1
V

1
β

ln Z .

Using the expression of ln Z in terms of the phonon
frequencies, we have:

u =
1
V

∑
q,ν

~ωq,ν

2
+

1
V

∑
q,ν

~ωq,ν

eβ~ωq,ν − 1
.
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The phonon density of states
Introducing the phonon density of states:

g(ω) =
1
V

∑
q,ν

δ(ω − ωq,ν)

we can write the thermodynamic fuctions as one dimensional
integrals over the frequencies:

f =

∫ ∞

0
dω g(ω) ln

[
2 sinh(

β~ω
2

)

]
,

u =

∫ ∞

0
dω g(ω)

~ω
2

+

∫ ∞

0
dω g(ω)

~ω
eβ~ω − 1

,

s =
1
T

(u − f ).
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The thermodynamic functions

The small program print_thermo.x reads as input a file with
the phonon dos and gives as output f , u, and s as a function of
T . Moreover it writes the isochoric specific heat:

cv =
∂u
∂T

= KB

∫ ∞

0
dω g(ω)

[
β~ω/2

sinh(β~ω
2 )

]2

= KB

∫ ∞

0
dω g(ω)eβ~ω

[
β~ω

eβ~ω − 1

]2

.

See also the QHA package in the QE distribution for a similar
functionality.
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The α-β structural transition in Tin - I
The structure of Tin in the α phase (T < 13C) is the diamond
structure (note a centered tetragonal unit cell with c =

√
2a):

The structure of Tin in the β phase (T > 13C) (c ≈ 0.55a):
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The α-β structural transition in Tin - II
Phase stability is studied comparing the Helmholtz free
energies at different temperatures:

P. Pavone, S. Baroni, and S. de Gironcoli, Phys. Rev. B 57,
10421 (1998).
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