
Brief introduction to Abinit
Short lecture notes for the IDEA league

summer school 2007

Pierre-Matthieu Anglade

July 30, 2007

Contents

1 Introduction 3
1.1 Abinit’s basics . 4

1.1.1 License and consequences 4
1.1.2 Code (building, etc.) 5

2 dft calculations basics 6
2.1 Abinit input files . 6

2.1.1 VIV: very important variables 12
2.2 Running the code . 13

2.2.1 Input . 13
2.2.2 Output . 14
2.2.3 Log . 17

2.3 Example of brass 50% study 17
2.3.1 Introduction . 17
2.3.2 Pseudo-potentials . 17
2.3.3 Brass . 23
2.3.4 Elastic constants . 23

2.4 Project . 25

3 Abinit’s features 26
3.1 Plane waves calculations . 26

3.1.1 Parallel calculations 26
3.1.2 Spin calculations . 27
3.1.3 GW . 27
3.1.4 TDDFT . 27
3.1.5 PAW . 27
3.1.6 Various analysis tools 27
3.1.7 Response function calculation 28

1

3.2 BigDFT . 28

4 Conclusion 29

2

Chapter 1

Introduction

Being able to perform multiscale calculations is one of the major goal of cur-
rent simulation development effort. It is very desirable to be able to ground
multiscale simulations on a firm as rock basis at the atomistic level. This
firm base is provided through the well known Schrödinger equation. However
exact solution for non trivial problem (counter e.g.: isolated hydrogen atom
or homogeneous electron gas) of this equation are hardly derivable; especially
on paper. That’s why a large effort has been devoted during the previous
century to develop approximation allowing to derive accurate solutions for
problem of scales and interest much larger than the above cited counter ex-
amples while still quite small even compared to the smallest ink droplet of
ink-jet printers.

It is not the topic of those notes to describe the history of so called
abinitio methods. Let just state that currently development are still try-
ing to increase both accuracy of calculations and the size of systems within
reach. This last goal is mainly pursued through the development of order N
algorithms. Examples of codes achieving this are, to name but a few, Con-
quest (http:www.conquest.ucl.ac.uk) and BigDFT (http:www-drfmc.cea.fr-
sp2mL SimBigDFTindex.en.html). Presently, abinitio methods, using the
local density approximation (lda) or the generalized gradient approxima-
tion (gga) together with pseudo-potentials are quite successful at reproduc-
ing and predicting accurately lots of materials properties.

Many codes exist that uses those approximations. One of them is Abinit.
This code can draw attention by lots of aspects, among which it’s availability
under the gpl license is not the least. It’s ease of use was one of the main
factor that lead to present it at this summer school. Moreover, probably be-

3

cause of its development process and licensing scheme, Abinit has a very large
documentation that allows easy learning. Most informations not included in
the present notes about Abinit can be found at www.abinit.org. This in-
cludes many tutorials, keywords documentation and complete commented
source code.

The goal of the present lecture notes is multi folds. First they aim at
introducing briefly Abinit’s package, community, and development model to
the reader. Second they must be an introduction to basic dft calculations.
This is achieved through the example of Abinit’s own input structure. In
this part we are going to emphasize the very minimal technical knowledge
one must have to perform dft calculations. As a conclusion to this second
chapter we propose you a simple calculation project which will help you
evaluate the possibilities and pitfalls of dft calculations. Third the lecture
notes shall introduce the reader to the various calculation possibility available
with Abinit. Interested student will then be able to go through the tutorials
to get deeper technical knowledge on those advanced features.

1.1 Abinit’s basics

1.1.1 License and consequences

In order to favor cooperation Abinit is delivered under the gnu general public
license that offers very interesting guarantees for scientific collaborations.
Among them is the fact that you can not be deprived of your own work or
of your tool since the code is really free and guaranteed to stay so.

By the way, favoring cooperation has some nice side effects. Among
them is the necessity to have a fairly well documented code. You can find all
the documentation in Abinit repertory, in the sub-directory “doc” or most
of it on-line at abinit.org. This documentation helps both beginners and
developers; both peoples wanting to use the code and people wanting to do
their own modifications.

Another consequence of the gpl is the presence of a fairly large commu-
nity of users and developers around Abinit. For instance, a tangible conse-
quence of this is the very short response time on Abinit’s forum where people
asks for help.

Third, side effect is that Abinit is a reliable, peer-reviewed scientific code.
Many groups modify Abinit. They need to read and check modifications by

4

others. Moreover X. Gonze and coworkers have had to introduce robust auto-
matic quality checking of the code to enable the large worldwide cooperation
that Abinit has become.

1.1.2 Code (building, etc.)

Abinit package is composed of it’s main program Abinit but also of many
other code. Some of them have only internal uses and others are almost
independent tools. If you delve in the codes you’ll find languages from bash
to fortran, from Perl to C passing by python. Yet even developers needs to
know only fortran to work with Abinit.

In fact compiling all the code is pretty straight forward even for absolute
beginners. Abinit 5.1 and later build system is based on the de facto standard
of autotools. So as long as a fortran 90 compiler is in your PATH you can just
go in Abinit directory (for instance after downloading and untaring Abinit’s
package) and type ./configure; make1. After a while Abinit and all binaries
are now build. You will find them in src/main/.

Fortran 90 being what it is, even the best code can fail because of evil com-
piler. Even the best compiler can fail because of spurious code. Do not trust
compilation results without checking them. You must go into the test direc-
tory and run the tests. Afterward you’ll be able to judge if the compilation
runs fine. To do this just type: cd tests; make tests_min; nedit */*/report.

Report files contains lists of tests and comments about them failing or
succeeding. It seldom happens that no tests fails. However you are now
aware of what can be done or not.

For instance if you happen to debug a failing tests (beware that problems
are usually more about compilers than about Abinit’s code) or to develop
a useful function feel free to contribute it by sending a patch to professor
X. Gonze by email (gonze@pcpm.ucl.ac.be).

1or alternatively: mkdir tmp; cd tmp; ../configure; make

5

Chapter 2

dft calculations basics

Dft calculations require usage of multiples algorithms and numerical meth-
ods. Each of them may require some tuning in order to output accurate
results. New users may hardly have all of them in mind. That’s why it is
recommended to start new calculations by tuning old input files. You will
find hundreds of such examples in Abinit tests directory.

2.1 Abinit input files

Lets start our introduction by explaining a typical sample of input file for
Abinit presented in figure 2.1. This file is mainly divided into four parts:
Starting at line 2 is the section that is going to control the quality of the
integration of energy over bands in reciprocal space. At line 12 begins the
definition of the unit cell. The third section, from line 23 to 25, commands
the precision of the plane-wave basis set. Finally, at line 26 starts the part
which describes the self-consistent field cycles algorithm and convergence.
We will explain all this in detail below.

Cell geometry

First let’s start with ions positions and cell geometry. At line 13 we specify
the length of the three basis vector. The default unit used by Abinit is bohr,
that is atomic units (1 bohr ' 0.529 Å). We specify twice 5.037618 and once
9.351229. Axis a and b will then have the same length of almost 2.5 Å, while
axis c will measure about 5 Å. It is possible to specify this by writing (for
instance):

6

1 ndtset 14

2 #Reciprocal space integration

3 kptopt 1

4 nshiftk 1

5 shiftk

6 0.0 0.0 0.5

7 ngkpt 4 4 4

8 tsmear 0.001

9 occopt 4

10 #use wavefunctions from previous dtset

11 getwfk -1

12 #Definition of the unit cell

13 acell 2*5.037618 9.351229

14 angdeg 90 90 120

15 ntypat 1

16 znucl 30

17 nband 18

18 natom 2

19 typat 2*1

20 xred

21 0.0 0.0 0.0

22 1/3 1/3 1/2

23 #Definition of the planewave basis set

24 ecut: 5

25 ecut* 1.414213562373095

26 #Definition of the SCF procedure

27 nstep 25

28 toldfe 1.0d-7

29 iprcel 145

30 iscf 7

Figure 2.1: Input file used to get the evolution of error with respect to cutoff
energy in the case of zinc pseudo-potential with twelve electrons. Note that
line numbers are not part of the input file.

7

acell 5.037618 5.037618 9.351229

or

acell 2.5 2.5 5 angstroms

Note that using the 2* notation used in figure 2.1 is especially convenient since
very brief. This may be very useful in case of large arrays. The parameter
angdeg at line 14 specify the angles in degrees between axis. First angle
between a and c, second between b and c and then between a and b. The
keyword angdeg is mostly used when we want to input hexagonal lattices.
It assure that the angles between axis is exactly what it is meant to be.
Alternatively one can also specify the matrix of primitive vectors in the form

rprim

a1 a2 a3

b1 b2 b3

c1 c2 c3

Where ax designed the x coordinate of axis a. This matrix is going to be
multiplied by the vector acell to define the actual simulation cell. In our
case, for an hexagonal lattice, we can write:

rprim

1 0 0

-0.5 0.8660254037844386 0

0 0 1

The number in the middle must be written with care and lot of decimal in
order to get exactly the geometry described previously with angdeg. This is
not very convenient and is the occasion to introduce an other trick of Abinit’s
input file. You can write the following:

rprim

1 0 0

-0.5 sqrt(0.75) 0

0 0 1

where
√

0.75 will be evaluated precisely at run time.
At line 15, ntypat specify the number of atomic species in the simulation.

then follows an array describing the atomic number of the present species
introduced by znucl. Subsequently every time atom species matters they will
be exactly in the order specified in znucl. Here znucl is obviously a single
number since we have a single species.

8

The keyword nband is critical. It describes the number of wave functions
(bands in term of solid state physics) which are going to be explicitly included
in the calculation. That is we must have enough to hold all our electrons.
For instance for a non spin polarized calculation (that is when considering
that 2 electrons can occupy the same orbital) the number of bands must be
greater or equal half the number of electron. For non conducting solid half
the number of electron is OK. Yet for metals where electrons spreads into
conduction bands we may need to add a lot of bands. After the calculation
it is always recommended to check the occupancy of bands in the output file.
The last band included must be empty or almost empty to ensure a correct
result.

With natom we specify the number of atoms in our cell. Even though
obvious in our case it is mandatory to specify for each atom its type. This is
done with typat at line 19 where “1” means atom of the first type specified
in znucl, “2”. . . Again for this array it may be useful to use the shortcut
m*n meaning that element n is repeated m times.

Specifying atomic positions can be done with several keywords: xangst,
xcart, or xred. The first one allows definitions in angströms, the second in
default real-space unit (bohrs), both in Cartesian coordinates and the last
one means numbers will be given in reduced coordinates (along vectors of
rprim). This method is very convenient for crystal structures. Here we used
the usual reduced coordinates for atoms in hexagonal closed pack structures.
Note the way we can specify fractional number as quotient. Again this is
quite useful when dealing with rational numbers.

Reciprocal space integration

Integration in reciprocal space are performed through classical integration
mechanisms. That is a mesh of point where functions (wave functions energy)
are evaluated must be defined. Within Abinit one usually do this with the
5 input variables kptopt, nshiftk, shiftk, and ngkpt or kptrlatt. The game
consist in finding the most homogeneous way to sample reciprocal space.
Sampling points are called k-points.

First we set kptopt to 1. This is the usual value for ground state cal-
culations. It means that we use an automatic array of k-points with every
symmetry. You must confer to the Abinit documentation for more informa-
tion about options you have.

Then nshiftk and shiftk define origins of grids. Using nshiftk=0 or

9

shiftk 0 0 0 means that the grid start at the Γ point. For instance one
can use a ccp grid by specifying

nshiftk 4

shiftk

0.5 0.5 0.5

0.0 0.5 0.5

0.5 0.0 0.5

0.5 0.5 0.0

which is usually highly efficient for cubic cells. In the case of figure 2.1.
Note that it is almost never a good idea to sample the Γ point: It’s special
properties makes calculations last longer. That’s why one uses at least one
shift for usual calculations.

Two variables, ngkpt and kptrlatt are used to define the meshes. Ngkpt

allow to define the usual, so called Monkhorst-pack, k-point mesh. It cor-
responds to defining the diagonal elements of the kptrlatt matrix which in
turn is made of three real-space vectors whose coordinate are expressed in
the rprim basis. K-points will occupy nodes of this super lattice. The quality
of the mesh can be characterized by the smaller distances between nodes
which is called kptrlen within Abinit.

A fine grid helps performing a precise integration. However, for metals,
the required precision of convergency is usually too difficult to reach at 0 K.
Then one uses an occupation function defined by the variable occopt asso-
ciated with a finite electronic temperature. Together those parameters will
smooth the fermi surface. Since the final goal is smoothing more than the
introduction of a physical temperature, various occupation functionals are
available. In general the cold-smearing developed by N. Marzari (occopt 4)
is OK for minimizing the thermal effect while smoothing the electron distri-
bution. The electronic temperature (by default in atomic energy units, that
is hartree) is defined by tsmear. One must remember that 1 mHa ' 300 K.
Making usual smearing temperatures of 0.01 Ha very high.

Plane wave basis set

Plane waves are a systematic basis set. Definition of the basis is then very
easy and can be controlled by a single parameter which is the kinetic energy
cutoff. This parameter is known as ecut within Abinit. It usually vary be-
tween 5 for the smoother pseudo-potentials to about 100 Ha for the steepest.

10

You can see that this keyword appears twice in the input file. This is
to demonstrate an other feature of Abinit: the multi data-set mode. It is
possible to chain calculations within one program run. This is especially
convenient when we need to do many related calculations. For instance, the
input file of figure 2.1 is intending to figure out the convergence of calculations
with respect to ecut. At line 1 we define the number of chained calculations.
All of them will use the same value for the parameters as specified in the
input file, except for ecut due to the special syntax chosen. The columns
at the end of ecut at line 24 specify that we define here the starting value
for ecut that is it’s value for the first data-set. It also tells Abinit that ecut

evolution through data-set will be a suite. At line 25 the star (*) tells Abinit
that the suite is a geometric sequence. Line 25 also define the common ration
to be

√
2.

The fact that we are going to chain multiple calculations appears also at
line 1 and 11. Keyword ndtset specify the number of calculations. For each
of them all parameters will be kept constant (as specified in the input file)
unless some special instructions are given (e.g. ecut). One can override the
default for a specific data-set by specifying its number. For instance if we had
tsmear13 0.01 in the input file the electronic temperature will be increased
to 0.01 hartree for the thirteen data-set only.

At line 11 the getwfk -1 require that Abinit takes the previously com-
puted wave functions as a starting point for each data-set. This will increase
considerably calculation speed since we are always considering the same sys-
tem with just more and more plane-waves. This requires that Abinit writes
the wave functions of each systems. Requirement which is fulfilled because,
has you can see in documentation, the default value for the prtwfk (print
wave-function) parameter is one.

Self consistent field cycles

One of the day to day challenges of peoples doing dft calculations is to get
the convergence of the so called self-consistent field (scf) cycles. To obtain
that we must first define conveniently what convergency means. And then
decides on the algorithms which will solve problem.

Many criterion can be used to define convergency and the convergency
requirement for different problems may be very different. For instance when
doing phonon calculations you will need to know the wave functions and
potential within machine precision. At the same time if you want to get a

11

correct dielectric matrix convergence of total energy within 10−4 hartree is
sufficient. Sometimes it is convenient to get the convergency of forces. Yet
this quantity is absolutely meaningless in cells where symmetries make all
forces vanish. In the case of figure 2.1, because our interest is on total energy,
and because we have no special need for a high level of convergency we use
the keyword toldfe. It will make Abinit stop the scf cycles when the changes
in total energy will be smaller than the defined value twice in a row. We also
specify that whatever happens the scf loop will end after, at most, 25 steps.
This is done by writing nstep 25.

In the present case reaching self-consistency is not challenging. Default
value would have done the trick. Input variables that controls self-consistency
within Abinit are mainly iscf, iprcel, and diemac. Iscf controls the so called
mixing scheme, that is the minimization algorithm which leads to conver-
gence. The default value of 7 chooses the best algorithm that is Pulay’s
mixing.

Iprcel controls the preconditioner; that is an operator in charge of sim-
plifying the self consistent problem. There exist many such operators of
which the one refers to by iprcel=4x is probably the most efficient and multi-
purposes. Note that for our homogeneous cells (no vacuum) it is much faster
and almost as efficient to use iprcel=0 which selects Kerker’s preconditioner.
The key parameter for this preconditioner is diemac which shall be chosen
proportionally to the problem toughness also known (almost) as the macro-
scopic dielectric constant. This last quantity evolves as the square of super
cells size for metals and is almost constant for non metals.

2.1.1 VIV: very important variables

Abinit usually set safely all of its variables however it is very likely that once
or then you will have to use one of the following:ixc, nnsclo, and nline.

The first one is used to select the exchange and correlation function. You
have a large choice between lots of lda, gga and other functions. If all your
pseudo-potential use the same exchange and correlation functional, Abinit
will use this one. Otherwise it will use ixc=1. If you want to do really abinitio
calculation the choice of Abinit is correct as long as all your pseudo-potential
uses the same exchange and correlation function. Otherwise you may want
to tune this function to best reproduce some known properties of special
interest for you.

The convergence of the density to the ground state should be an bal-

12

anced process between the convergence of wave functions and of the den-
sity/potential itself. Yet sometimes, for very large system or for system with
large energy cutoff, the settings of the conjugate gradient which deals with
wave functions optimization are too conservative to get a nice convergency.
The algorithm is controlled by the two variables nnsclo and nline The first of
them controls the number of restart per scf step of the CG. The second the
number of line minimization to be performed per restart. Later we will learn
how to diagnose a bad convergence of wave functions. You need to remem-
ber that restarting a conjugate gradient is useful for an-harmonic functions
(far for convergency) while increasing the number of line minimization is the
usual and most efficient procedure for harmonic ones.

2.2 Running the code

Once compiled the binary file abinis stand in you src/main/ directory. If
you’ve build the parallel version of Abinit you have also a binary called
abinip. The first can be used directly. The second needs to be launched by
your mpi script. In this section we deal with what is happening after starting
the run.

2.2.1 Input

Abinit is user friendly and will politely ask you for a number of information.
In order they are:

• name of your input file,

• name of an output file,

• prefix for other (called generic) input files,

• prefix for other (called generic) output file,

• prefix for temporary files,

• and finally one pseudo-potential file for each atomic species specified
in your input.

13

First let’s notice that you must answer to each of this question for each
run. This is a bit heavy but you can skip this step by writing your answers
in a file. Let’s call this file answers.files; it may look the following:

a.in

a.out

a_in

a_out

/tmp/a_tmp

pseudopotential_file1

pseudopotential_file2

...

Now we can start Abinit by the following command:
/path/to/abinis < answers.files.
Under unices shells this redirect the so called standard input to our file
answers.files. After launch, Abinit starts the calculation and writes a lot of
comments and details to the standard output. Again we usually redirect all
this to a log file.

Abinit will also write an output file named after the second line of
answers.files. If this file already exists, Abinit append a capital A to the
name. If it exists also it tries a B and so on. If all files exists until Z, you’ll
get an error message.

Generic input files are used through variables like irdwfk during the run.
For instance if you want to read the wave functions written during run A in
subsequent run B, the prefix of generic input file of run B must match the
prefix of generic output file of run A.

Generic temporary files can usually be forgotten about. That’s why they
are directly send to tmp in the example above.

2.2.2 Output

Abinit output file is a (long) structured ascii file in which you must be able to
find important information such as calculations results (always useful right?).

It is divided in three sections. First it reminds you every information you
have given to Abinit. Telling you some details about the various resulting
calculation parameters. For instance for each data-set you get a resume
looking like this:

DATASET 7 : space group Pm m a (# 51); Bravais oP (primitive ortho.)

==

14

Values of the parameters that define the memory need for DATASET 7.

intxc = 0 ionmov = 0 iscf = 7 ixc = 1

lmnmax = 6 lnmax = 6 mband = 8 mffmem = 1

P mgfft = 54 mkmem = 14 mpssoang= 3 mpw = 2504

mqgrid = 3001 natom = 2 nfft = 48600 nkpt = 14

nloalg = 4 nspden = 1 nspinor = 1 nsppol = 1

nsym = 8 n1xccc = 0 ntypat = 1 occopt = 4

For the susceptibility and dielectric matrices, or tddft :

mgfft = 30 nbnd_in_blk= 4 nfft = 9720 npw = 37

==

P This job should need less than 20.316 Mbytes of memory.

Rough estimation (10% accuracy) of disk space for files :

WF disk file : 4.281 Mbytes ; DEN or POT disk file : 0.373 Mbytes.

==

This is written at the time Abinit is checking your input. You get the value
of some important variables. Whose meaning can be checked in Abinit docu-
mentation. The remaining of important input variables are echoed afterward:

natom 2

nband 8

ndtset 14

ngfft1 12 12 20

ngfft2 15 15 24

ngfft3 16 16 30

ngfft4 18 18 32

ngfft5 24 24 40

You can see that the syntax is close to that of the input file. Variables
that are kept constant along data-sets are written once. Changing variables
are written with an appended number. For instance, here the number of grid
point used to describe the function and to perform Fourier transforms in each
direction (ngfft) changes between data-sets. This is a direct consequence to
the increase of ecut.

The second section of the output file describes evolution of critical quan-
tities along scf cycles.

==

iter Etot(hartree) deltaE(h) residm vres2 diffor maxfor

ETOT 1 -2.2196893333886 -2.220E+00 7.148E-03 5.059E-01 6.147E-03 6.147E-03

ETOT 2 -2.2201091159529 -4.198E-04 3.542E-05 1.971E-03 1.143E-04 6.032E-03

15

ETOT 3 -2.2201101669211 -1.051E-06 2.908E-05 5.203E-05 5.082E-05 5.981E-03

ETOT 4 -2.2201102191573 -5.224E-08 1.518E-05 6.066E-06 6.539E-06 5.975E-03

ETOT 5 -2.2201102267255 -7.568E-09 4.939E-05 2.273E-08 6.160E-07 5.974E-03

At SCF step 5, etot is converged :

for the second time, diff in etot= 7.568E-09 < toldfe= 1.000E-07

Cartesian components of stress tensor (hartree/bohr^3)

sigma(1 1)= 7.07589342E-04 sigma(3 2)= 0.00000000E+00

sigma(2 2)= 9.69369244E-04 sigma(3 1)= 0.00000000E+00

sigma(3 3)= 7.94392636E-04 sigma(2 1)= 2.26708045E-04

==

For each cycle, one line is written. It starts with ETOT and the number
of the iteration. Then comes the total energy found (Etot) and the change
in total energy with respect to the previous iteration (deltaE). Residm is the
max residual of wave functions (residm = max(< ψi|(H− εi)2|ψi >)) It tells
you the level of convergence for the worst converged wave function during
the current iteration; yet it is not significant of the overall convergency.

One of the most significant outlier of convergency is the average of square
potential residuals vres2. Let Vin be the potential at the start of one scf
cycle and Vout the one at the exit resulting from optimization of energy with
respect to wave functions in the guessed Hamiltonian. The residuals are just
Vres = Vout − Vin. Thus at convergency Vres = 0 making E(V 2

res) a nice
convergence criterion.

For molecular dynamics or cell optimization we do not need absolute
convergency but only accurate forces. Then the maximum difference between
forces at the previous iteration and forces at the current one (diffor) can be
a convergence criterion.

The third part of the output file is a resume of all important quantities
at the end of the calculation. There again you will find all important quan-
tities. The most important thing to check is occupation numbers of the last
band (wave function) at each k-points it must be zero or very close to zero.
Otherwise it is a sign that you have not included enough bands into your
computation.

16

2.2.3 Log

The log file is mostly an expanded version of the output file. It contains lots
of comments and warning. That’s why it is usually saved. It may be helpful
to diagnose problems.

2.3 Example of brass 50% study

2.3.1 Introduction

The example of brass will make a fine example for a typical dft study. It
allows to introduce most typical difficulties while not presenting a tough
problem. Indeed brass 50% is a body centered crystal alternating zinc and
copper. This special property will ease greatly our calculations: not only
unit cell for brass 50% is smaller than that of any disordered alloy but it also
retains much more symmetries.1.

2.3.2 Pseudo-potentials

The first step in a plane-wave ab initio calculations is to choose pseudo-
potentials. And to evaluate their properties. We chose to use pseudo-
potentials of the hgh (Hartwigsen, Goedecker, Hutter) formalism here. There
exists two for both elements. One with only s electron and one with both s
and d electrons.

Evaluating the properties of a pseudo-potential is a twofold task. One
needs to be able to control the accuracy of the various approximations used
to solve the dft problem; and then it is mandatory to check the ability of
the pseudo-potential at describing some well known properties of the system
under investigation.

In the usual case, for metals, the first step consists in determining the ef-
fects of three parameters: the plane-wave basis cutoff energy, the sampling of
the first Brillouin’s zone (fbz) and the electronic temperature. Fortunately

1Readers must be aware that abinitio codes usually takes care of symmetries to acceler-
ate calculations and increase precision. The drawback of this is that no natural fluctuation
is going to break algorithm enforced symmetries. This sometimes makes molecular dy-
namic results from a dft code very different from their classical counterpart. However if
needed you can enforce symmetry breaking within Abinit.

17

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150
Cutoff Energy (ecut) [Hartree]

10-6

10-5

10-4

10-3

10-2

10-1

100

101

∆E
 [H

ar
tr

ee
]

Cu 11e- HGH
Cu 1e- HGH
Zn 2e- HGH
Zn 12e- HGH

Figure 2.2: Energy convergence as a function of the plane-wave cutoff energy
for the four hgh pseudo-potentials. The squares are point calculated for
copper; circles stands for zinc results. Continuous line draws the evolution of
convergence for the “s-only” pseudo-potentials while dashed line represents
the evolution for the “sd” pseudization. The three black horizontal line
label convergence level of special interest: at a level of 10−2 hartree the
convergence is never enough for a true system study; yet it is enough to hold
reasonable school results; 10−3 hartree is typically the level of convergence
used in pseudo-potentials abinitio studies because it is also the usual level
of convergence between a pseudo-potential and the full-electron calculation
used to generate it; finally 10−4 hartree is a level of convergence seldom used
when one want a very precise calculation.

the cutoff energy is almost independent of the two other parameters. Mon-
itoring the level of accuracy consist in checking that the difference in total
energy for a converged calculation is below a certain level when compared
to the same calculation with an absolutely converged value of the parameter
under investigation.

Cutoff energy

The first approximation to be checked is the extension of the plane-wave
basis set required to get an accurate description of the system. This number
depends solely on the pseudo-potential. Within Abinit it is controlled by the

18

parameter ecut which is the maximal kinetic energy of the plane-waves used
to describe the wave functions.

Because we will need to know whether our pseudo-potentials are correct
or not we can’t start working with the bcc brass. In a different world where
we would knew for sure (from previous experiences for instance) that the
pseudo-potential are accurate it would be quite possible to check directly in
brass the correct value for ecut. We would have obtained the biggest cutoff
energy of those required for Zn or Cu. Here however we must get each of
those cutoff energy.

Using input files like the one displayed in figure 2.1 we get total energies
corresponding to each value of the cutoff energy. They can be compared to
the most converged of them to get figure 2.2.

In figure 2.2 it is striking that the pseudo-potential with less electrons
require much smaller values of ecut. Both materials seems to behave exactly
the same way. This is quite awaited. The deeper the electrons the higher the
cutoff must be. This is precisely the reason that as leaded to the development
of pseudo-potentials.

Accurate sampling of the Brillouin’s zone

In periodic systems calculations, the total energy of the system is obtained
through integration of bands energy across the fbz. It is then mandatory
to sample accurately this area. This is done through what is called a k-
point mesh. This is a very usual integration problem. The precision is then
dependent upon usual parameters. The steeper the bands variations the
more k-points are required. The largest the cell (the smaller the fbz), the
less k-points are needed.

One of the most crucial question is to know if any band crosses the fermi
level. That is to say if we are considering something with a metallic behavior
or an insulator. In the first case it is quite often mandatory to have a very
accurate sampling of the fbz, because bands are populated only up to this
level which then shall be almost perfectly described. Conversely, materials
with a gap can be described with loose k-point meshes.

Usually for metals (or any material described as metallic in dft) one
will have to use a very large number of k-points. That may be numerically
untractable. Alternatively, instead of increasing the accuracy of the mesh,
one can make the problem easier by smoothing the borders of the fermi
surface. In fact this is the natural effect of electronic temperature. It spreads

19

0 5 10 15 20 25 30
"ngkpt"-0

.51
07

-0
.51

06

-0
.51

05

-0
.51

04

-0
.51

03

-0
.51

02

-0
.51

01

T
ot

al
 e

ne
rg

y
[H

ar
tr

ee
]

T=0.001 Ha
T=0.002 Ha
T=0.004 Ha
T=0.008 Ha
T=0.016 Ha
T=0.032 Ha

Figure 2.3: Energy with respect to monkhorst pack k-point mesh for single
atom ccp copper cell with the single electron HGH potential. Each couple
line/symbol represent energy evolution for electronic temperature ranging
from 1 mHa to 32 mHa. The smearing function used is that of N. Marzari.

the population of electrons making integration across the fermi surface much
easier. Within Abinit the electronic temperature is defined via the parameter
tsmear . Nevertheless the fermi distribution of electrons is not the best suited
functions to reach smooth integration. Indeed, we try to compute ground
state properties of materials. Then what we want is to get the smoother
integration with the smallest perturbation of the wave-functions. This can
be reached by so called cold-smearing functions as developed by N. Marzari.
To select between various smearing functions one use the variable occopt .

For non metallic systems the convergence of the k-point mesh is a simple
task that can be performed directly just in the way demonstrated for ecut
previously. For metals we must conduct a two variable optimization. It
will result in a set of (temperature,k-mesh) that achieves our convergence
criterion. We then have to discriminate on the basis of equilibration of, on
the one hand, physical properties, on the other hand computational cost.

In our metallic case, at the starting point we need to evaluate the com-
bined effect of k-mesh and smearing. The result is displayed for copper in
figure 2.3.

First, one notice that energy is not variational with respect to k-point

20

sampling. To evaluate the degree of convergence of a particular mesh we
must then take into account not only its own energy difference with respect
to the converged case but also that of its neighbor. For instance if we look
at the second point for the lowest temperature case. Its difference with
the converged case is fairly minimal. This happens accidentally by error
cancellation and is a testimony of the need to consider neighboring meshes
errors to determine the level of convergence obtained.

Second, as expected, it appears that convergence for a given mesh is
better for higher temperatures. They should allow the use of smaller k-point
meshes. In our particular case it will not matter tremendously. However this
is of uttermost importance for lots of metals.

Third, we note that even for the smallest k-meshes the energy is converged
better than 1 mHa. This is fairly unusual for a metal yet it is a known feature
of copper and few others. Even at low temperature we will have reasonably
converged calculation in both Zn and Cu with small k-point meshes.

Finally, notice that the converged energies (for the finest k-meshes) vary
with the temperature. Energies of calculation done with different electronic
temperature CAN NOT bet compared directly.

Sustainable electronic temperature
And pseudo-potentials accuracy

Now, we must determine which electronic temperature are usable in our
cases and if our pseudo-potentials are accurate enough. This last part can be
performed first. We will do a structural relaxation of the Zn and Cu cells and
check simply that the obtained lattice parameters agree with experimental
values. For a real study we should obviously perform much more checking.

Cell relaxation is a matter of adding the following variables in your input
file (your responsibility is to tune the associated values):

ionmov 2

optcell 2

strfact 100

ecutsm 0.5

tolmxf 1e-5

ntime 20

Effects of this addition is the following: ionmov will allow ions to relax — this
is useful only for complex structure; optcell tells Abinit to optimize the cell
geometry and size; strfact inform Abinit of the arbitrary factor imposed for

21

Cu 11e− Zn 12e−

T=0.001 Ha a0 = 6.693 bohrs 2.0%
a0 = 4.818 bohrs 4.3%
c0 = 9.408 bohrs 0.64%

T=0.01 Ha a0 = 6.692 bohrs 2.0%
a0 = 4.822 bohrs 4.3%
c0 = 9.375 bohrs 0.29%

T=0.02 Ha a0 = 6.691 bohrs 2.1%
a0 = 4.832 bohrs 4.1%
c0 = 9.302 bohrs 0.49%

T=0.03 Ha a0 = 6.686 bohrs 2.1%
a0 = 4.844 bohrs 3.8%
c0 = 9.225 bohrs 1.3%

T=0.04 Ha a0 = 6.633 bohrs 2.9%
a0 = 4.866 bohrs 3.4%
c0 = 9.102 bohrs 2.6%

T=0.05 Ha a0 = 6.601 bohrs 3.4%
a0 = 4.891 bohrs 2.9%
c0 = 8.973 bohrs 4.0%

Table 2.1: Accuracy of lattice parameter for Cu and Zn computed with
various smearing parameter.

comparisons of forces and stresses; ecutsm smoothies effect of cell changes;
tolmxf is the stopping criterion for any kind of cell optimization; and finally
ntime is the maximum allowed number of optimization steps.

The single (resp. two) electron potential for Cu (resp. Zn) gives lattice
parameter a0 = 2.52 Å (resp. a0 = 2.44 Å c0 = 3.98 Å) that is errors of
about 35% (resp. 9% and 22%). Clearly those pseudopotentials can’t be
used to describe copper or zinc; even roughly.

As shown in table 2.1 the complete pseudo-potentials gives much better
results with a max discrepancy of less than 5%. Accuracy of the the copper
pseudopotential is reasonable. That of the zinc is poor. For a real case
study we would have to try others based on different exchange correlation
functionals

Effects of electronic temperature differs in our metals. While effects are
very small for copper until 0.04 hartree (that is almost 12000 kelvins) the
c parameter of zinc changes fast. Overall it appears very reasonable to use
electronic temperature of at least 0.02 hartree. The resulting error is much
smaller than the one resulting from the pseudo-potential/exchange correla-
tion function.

22

2.3.3 Brass

We have now chosen the pseudo-potentials. The cutoff energy to choose is
known. We need again to check the sampling of reciprocal space and equi-
librium volume before getting into actual calculations of elastic properties.
Again we would need to check the convergency of electronic temperature and
kpoint length for this problem. This is done exactly as before.

Brillouin’s zone sampling in brass

We again have to pay attention to convergence of the k-point mesh and
potential effect of electronic temperature. For a simple cubic cell as that of
brass it is very tempting to use directly the ccp mesh defined by:

nshiftk 4

shiftk 0.5 0.5 0.5

0.0 0.5 0.5

0.5 0.0 0.5

0.5 0.5 0.0

However if we had to face a more difficult situation we could have relied on
Abinit ability to self decide the convenient mesh by using the input variables
prtkpt and kptrlen in a preparation run.

2.3.4 Elastic constants

It is possible to determine elastic constants by response function calculations.
This is an advanced feature of Abinit and it looks like too much advanced for
this lecture. However you are encouraged to have a look at Abinit’s tutorial
on elastic constant calculations. Here we will concentrate on getting them
by finite difference method.

With the help of table 2.2 we can impose some strains to the cubic cell
of brass 50%. Strains formulated in this table are derived to ease our com-
putation by keeping the volume constant. Nonetheless we shall not choose
the deformation parameter γ too bluntly.

First we must keep within the elastic limit: remember that even though
the cell will not be allowed to relax we must relax atomic positions to get
the correct ground state energy under the imposed strain. High values of γ
may causes instabilities. Moreover the greater the deformation, the greater
higher order elastic constants will enter the game and produce non-quadratic
effects. To relax ions we must introduce the following keywords:

23

parameters ∆E/V (γ)

ε1 = −ε2 = γ
ε3 = (1− γ2)−1 − 1

2C ′γ2 = (C11 − C12)γ2

ε1 = ε2 = ε3 = γ 9
2
Bγ2 = 3

2
(C11 + 2C12)γ2

ε6 = γ
ε3 = γ2(4− γ2)−1

1
2
C44γ

2

Table 2.2: Elements of strain tensor (εn) and associated changes of energy
for an elastic media. The strain tensor elements and elastic constants are
expressed with Voigt’s index contraction. This formulation is valid only for
cubic materials.

ionmov: when set to 2 or 3 this variable will lead Abinit to relax atomic
positions. For very small system 3 is the recommended value.

ntime: it is the parameter that commands the maximum number of relax-
ation steps. This can be set to any big integer value yet 10 to 20 are
probably more than enough.

dilatmx and optcell: remember that we don’t want to relax our cell. The
default null values are OK for those two parameters.

tolmxf: The only efficient parameter to stop an atomic relaxation is vanish-
ing forces. Tolmxf control the tolerance on the max forces. A value of
10−5 hartree per bohr is enough for our purposes. Note that the scf
convergence criterion shall be chosen accordingly: you must make sure
that forces are converged beyond this stopping criterion.

Second, we may encounter problems arising from our discretization of
space. Since we change cell parameters and axis lengths, the number of grid
points included in our calculation may change. Since we use a heavyside
function to discriminate between included plane-waves and excluded one,
changes will result in numerical noise. To avoid this we can use the parameter
ecutsm. This allow for a continuous, with continuous second derivative, cutoff
functions. Usually ecutsm is chosen to be 0.5 hartree.

We have many ways to derives elastic constant. The safest is probably
to evaluate for multiple values of γ the total energy. And then assess elastic
constants. Note that Abinit is computing strain for each cell. You may check
your result by deriving elastic constant from the stress-strain relation.

24

2.4 Project

Abinitio calculation is a versatile tool once mastered. Yet many errors can
be done and it is quite important to master the basis. That’s why hereafter
we propose you a very simple project that consist in simply following step
by step the calculations explained in this documents. We propose you to
discover the mechanical properties of β-SiC. From the bare knowledge of
it’s crystal structure: zincblende. That is a face centered cubic where each
atomic species has the other for nearest neighbors.

Let’s remind the steps to get the elastic constant:

1. Get the correct cutoff energy for the provided pseudo-potentials of Si
and C. Silicon form a cubic diamond structure with a lattice parameter
of about 5.43 Å and carbon an hexagonal close packed whose lattice
parameter are about a = 2.46 Å and c = 6.71 Å.

2. Silicon carbide is an insulator. We do not need an electronic temper-
ature convergence study. We can directly do the k-point mesh conver-
gence. Find an appropriate mesh for β − SiC using prtkpt. Note that
you have to guess the cell parameter.

3. Relax the cell parameter using optcell, ecutsm, dilatmx, tolmxf, and
strfact..

4. If the relaxed cell parameter has greatly changed from you initial guess,
you need to restart the k-point convergency and eventually relax again
the cell.

5. Apply the formulas of table 2.2 to get the elastic constants..

Has an extra, you can also compute the properties of α-SiC: a wurtzite.
That is is a closed packed hexagonal structure with two atomic species where
each species have only the other as nearest neighbor. Beware that formulas
of table 2.2 do not hold. You need to derive an other set of formulas to get
the five independent, non-zero, constants for hexagonal materials: C11, C12,
C13, C33 and C55.

25

Chapter 3

Abinit’s features

The possibilities of Abinit are much wider than what we have learned in the
previous part. However it is clearly beyond the scope of this summer school
to detail all its capabilities. It is nonetheless interesting to sum them up just
to let you know that, one they are available, two some tutorials detailing
there uses are accessible at http://abinit/Infos v5.2/tutorial/welcome.html.

3.1 Plane waves calculations

3.1.1 Parallel calculations

There are situations where a sequential code is not enough, often because it
would take too much time to get a result. There are also cases where you
just want things to go as fast as your computational resources allow it. To
this end, the Abinit package provides a parallel version of the main binary,
called abinip.

Abinip parallelism is based on MPI, the standard message passing in-
terface (Note however that some elements of Abinit are parallelized with
openMP yet this is not efficient actually). Since MPI is standardized many
implementation exists. Among them two open-sources code are most fre-
quently used together with Abinit: MPICH and openMPI.

The parallel version of Abinit is compiled and tuned by using the various
mpi flags proposed by its build system (in Abinit directory type
configure --help $|$ grep mpi for more details).

26

3.1.2 Spin calculations

Abinit like most dft code can handle magnetism. This is frequently useful;
not only for magnetic materials but also when trying to reproduce most
accurately materials properties. You have a complete tutorial available on
this matter.

3.1.3 GW

Although the Kohn and Sham bands are know to be usually reasonable,
quantities like the band gap are, even qualitatively, wrong. An accurate
method to get both correct band structure and band gap is the so called GW
approximation. You can learn how to use it with Abinit’s tutorials.

3.1.4 TDDFT

An other method to correct Kohn-Sham energies is the time dependent den-
sity functional theory (tddft). You can learn how to do such calculations
in the Casida’s approach with the tutorial on tddft.

3.1.5 PAW

We have witnessed in this lecture that the cutoff energy required to get con-
verged results might sometimes be quite high with norm conserving pseudo-
potentials like hgh. This is a really limiting factor for lots of calculations.
That’s why people have developed other kinds of pseudo-potential. One of
the most effective (softer) kind is paw. Using paw requires to tune more
parameter than the use of norm conserving pseudo-potential — more ap-
proximations ⇒ more parameters — and you will probably be happy to find
a tutorial on this technique which allow drastic reduction in computational
time.

3.1.6 Various analysis tools

Analyzing and visualizing parts of Abinit output may be difficult, like all
display of three dimensional functions. Abinit comes with a set of program
among which one is used to convert Abinit output into readable file for
visualization tools like “open DX”. The tutorial on analysis tools will help
you mastering the visualization problem.

27

3.1.7 Response function calculation

Calculations of quantities which are first, second and third derivative of total
energy is a very large part of dft uses. Thanks to the so called 2n + 1
theorem all those can be derived from first order wave functions. There is
many tutorials within Abinit to teach how to do those calculations. Going
through them you will learn, for instance, how to compute phonons or elastic
constants.

3.2 BigDFT

This part of Abinit is currently in development. Then the associated set of
calculations is much reduced. Today BigDFT is able to output total energy
and forces in non periodical situations. But tutorials are not ready.

The source of differences between plane wave codes and BigDFT is the
use of wavelets as a basis for wave functions representation. Wavelets are lo-
calized in real space and in Fourier space and form a complete basis set. This
makes them the best known candidate for accurate order N dft calculations.

28

Chapter 4

Conclusion

This introduction is aimed at helping beginners with first Abinit use, as
well of demonstration of standard dft calculations. It is mostly a written
reminder of the content of my talk. Please use it extensively to help you with
your abinitio calculation.

Note that it is not intended as a masterpiece of English grammar or
spelling. Yet any comment on this are welcome. Much more welcome are
comment on contents.

After reading this, if you want to get deeper skill in abinitio calculations
you are heartily invited in reading Abinit’s documentation. Especially using
input variables documentation and tutorials. Feel welcome to ask any ques-
tion on Abinit’s forum (forum@abinit.org). By following the community “ne-
tiquette” (www.abinit.org/community/?text=netiquette) you’ll quite likely
get answers.

If you fall in love with dft, reminds that Abinit is licensed under gpl
granting you the freedom to make your own research and uses of this code.
Again, you are welcome to contribute.

29

